APPENDIX 4: METHANE MONITORING DATA PROVIDED BY LANDFILL OPERATORS

The following appendix to EPA's assessment report provides the methane monitoring data provided by landfill operators during Stage 3 of EPA's landfill assessment process.

CONTENTS

1	Site	s with Possible Natural Methane Gas Detected	2
	1.1	Landfill address: 274 Hallam Road, Hampton Park	2
2	Site	s with Landfill Methane Detected	
	2.1	Landfill address: 890 Taylors Road, Lyndhurst	42
	2.2	Landfill address: TPI sites Fraser Road and Heatherton Road Clayton South	
	2.3	Landfill address: 654-718 Clayton Road, Clayton South	
		Landfill address: Springvallev Park, Clarke Road, Springvale South	

1 SITES WITH POSSIBLE NATURAL METHANE GAS DETECTED

1.1 Landfill address: 274 Hallam Road, Hampton Park

Landfill licence: ES33144

Licence holder: SITA Environmental Solutions

Figure: Hallam Road Monitoring Bore Location Plan (bores constructed by SITA).

Figure: Hallam Road Monitoring Bore Location Plan - close-up of western boundary bordering Hallam Road (bores constructed by SITA).

Table: Hallam Road methane monitoring data supplied by SITA (field data)

5.4	GAS		LFG 1			LFG 1B			LFG 2			L	.FG 3		LFG 4			LFG 5			LFG 6			LFG 7	
Date	(%) v/v	1.5- 2.5m	4.5- 5.5m	7.5- 8.5m	1.5- 2.5m	4.5- 5.5m	7.5- 8.5m	1.5- 2.5m	4.5- 5.5m	7.5- 8.5m	1.5- 2.5m	4.5- 5.5m	7.5-8.5m	1.5- 2.5m	4.5- 5.5m	7.5- 8.5m									
	CH₄	44.0	39.0	25.0				6.0	6.6	0.0															
Mar 1999	CO ₂	53.0	45.0	20.0				26.0	25.0	2.2															
	02	1.7	3.6	3.9				0.6	0.4	18.0															
	CH₄	63.0	0.0	0.0				0.6	0.0	0.0															
Sept 1999																									
	CO ₂	25.0	0.1	0.1				0.1	0.1	0.1															
	O ₂	0.4	21.0	20.0				21.0	21.0	21.0															
Jan 2000	CH₄	-	-	-				14.0	0.1	0.1															
	CO ₂	-	-	-				24.0	8.1	8.5															
	O ₂	-	-	-				0.1	10.0	10.0															
A mr 2000	CH₄	-	16.0	17.0				0.8	0.0	0.0															
Apr 2000	CO ₂	-	1.0	0.0				0.2	9.9	8.3															
	O ₂	-	17.0	16.0				21.0	8.6	9.6															
	CH₄	0.8	16.0	17.0				29.0	0.0	0.0															
May 2000	CO ₂	0.7	19.0	18.0				20.0	7.3	11.0															
	O ₂	21.0	1.3	0.2				0.0	12.0	5.4															
	CH₄	6.5	0.0	0.0				0.4	17.0	18.0															
June 2000	CO ₂	3.4	7.4	12.0				11.0	0.0	0.0															
	O_2	17.3	13.2	4.7				5.6	20.0	18.0															
	CH₄	-	16.9	16.9				67.0	20.0	0.1															
Aug 2000	CO ₂	-	17.3	16.5				11.0	7.7	9.0															
	O ₂	_	3.0	0.1				0.1	9.6	6.1															

					 -								 			
	CH₄	0.0	1.4	1.5		2.8	0.0	0.0								
Dec 2000	CO ₂	0.1	0.6	0.7		1.0	11.0	9.6								
	O ₂	20.5	20.2	20.0		19.4	3.5	5.8								
	CH₄	12.5	15.5	19.5		0.3	0.2	0.2								
Mar 2001	CO ₂	25.0	19.0	17.0		15.0	11.0	3.9								
	O ₂	0.2	1.0	0.3		0.4	1.6	17.3								
	CH₄	-	5.3	20.5		70.0	0.0	0.0								
June 2001	CO ₂	-	3.5	17.0		27.0	9.1	9.3								
	O ₂	-	15.1	0.0		0.0	11.6	5.7								
	CH₄	-	0.2	0.2		63.0	0.0	0.0								
October 2001	CO ₂	-	0.5	0.5		36.0	12.0	0.4								
	O ₂	-	20.4	20.4		0.5	10.1	10.0								
	CH₄	-	30.3	28.1		47.8	0.0	0.0								
January 2002	CO ₂	-	18.5	18.4		36.0	9.1	4.8								
	O_2	-	0.0	0.4		0.3	10.3	15.5								
	CH₄	-	0.1	31.5		56.0	0.0	0.0								
Mar 2002	CO ₂	-	0.0	16.0		35.0	8.3	3.6								
	O ₂	-	20.7	3.0		0.0	10.3	16.4								
	CH₄	-	7.3	41.5		65.0	7.7	0.0								
June 2002	CO ₂	-	3.9	19.0		31.0	15.0	9.3								
	O_2	_	16.9	0.9		0.6	2.4	4.1								
	CH₄	_	34.5	48.5		66.0	25.0	0.5								
Sept 2002	CO ₂	-	17.0	20.0		34.0	16.0	12.0								
	O_2	-	3.5	0.0		0.0	0.6	0.7								

									т —	T	 					
	CH ₄	1.2	47.7	1.2		0.6	0.0	0.0								
Dec 2002	CO ₂	1.1	24.9	1.2		0.6	0.0	0.0								
	O ₂	19.7	1.0	19.7		20.3	20.7	20.7								
	CH₄	24.5	19.0	0.3		21.5	51.0	52.0								
March 2003	CO ₂	23.0	19.0	10.0		22.0	21.0	19.0								
	O ₂	0.0	0.0	3.2		0.0	0.0	0.0								
	CH₄	-	43.5	44.0		55.0	12.5	1.4								
June 2003	CO ₂	-	27.0	24.0		38.0	20.0	12.0								
	O ₂	-	0.1	0.0		0.0	0.2	0.4								
	CH₄	-	54.7	52.5		65.1	33.3	4.7								
Sept 2003	CO ₂	-	28.8	28.8		34.3	23.6	13.0								
	O ₂	-	0.2	0.2		0.6	0.2	0.2								
	CH₄	-	57.7	55.7		46.9	40.9	5.8								
Dec 2003	CO ₂	-	28.7	28.1		33.2	26.6	12.4								
	O_2	-	0.1	0.0		0.0	0.1	0.2								
	CH₄	-	54.3	54.3		0.0	4.2	3.1								
March 2004	CO ₂	-	28.6	26.7		12.2	20.4	12.5								
	O ₂	-	0.0	0.1		4.1	0.1	0.8								
	CH₄	-	51.0	52.5		0.0	10.0	7.4								
June 2004	CO ₂	-	28.5	29.3		19.0	22.0	13.2								
	O_2	-	0.0	0.0		0.0	0.0	0.2								
	CH₄	-	54.6	52.3		0	17.8	10.6								
Sept 2004	CO ₂	-	24.6	27.3		19.3	20	13.1								
	O_2	-	0.0	0.0		0.4	0.0	0.0								

6

	CH₄	-	50.3	50.8				0.0	9	10.4	1.5	51.6	33.5	0.1	0.1	0.0					
Dec 2004	CO ₂	_	25.4	26.4				12.8	19.1	12.9	1.2	30	21.6	1.1	4.8	3.7					
	O ₂	_	0.0	16.7				8.2	0.1	0	19.9	15	6.7	19.4	14.6	15.4					
	CH₄	4.1	7.5	8				0.22	_	_	_	_	-	_	0.21	_					
June 2005	CO ₂	_	4.5	6.1				3.6	3.4	0.61	0.71	0.53	0.55	1.1	0.76	0.61					
	O ₂	20.9	20.2	7.2				22.1	22.1	20.9	19	22.2	22.2	22.5	22.5	22.4					
	CH₄	-	14.7	29.3				_	_	-	-	5.7	44.3	_	_						
Dec 2005	CO ₂	_	9.7	17.7				2.0	1.5	0.4	_	16.2	35.3	_	6	8.6					
	O ₂	_	14.3	8.8				20.2	20.3	20	20.3	7.6	0.5	20.2	11	11.3					
	CH₄	_	19.9	22.3				-	_	-			no pipe	_	-	_					
June 2006	CO ₂	3	11.2	10.2				0.8	1.1	0.7	0.7 - 16.2 no pipe			_	1.8	-					
	O ₂	15.4	12.6	12.4				19.5	19.2	19.7	- 16.2 no pipe 7 20.3 7.6 - no				18.8	20.1					
	CH₄	_	1.7	0.5				-	_	_	7 20.3 7.6 - no no pipe no pipe			20.4	-	_					
Dec 2006	CO ₂	2.4	2	0.6				-	_	-	1.5	no		4.8	-	0.5					
	O ₂	19	19.9	20.7				21.2	21.2	21.2	5.3 no pipe no pipe no pipe no pipe no pipe no no pipe				20.9	20.8					
June 2007	-			Round mi	issed due	to staff o	hangeov	er - letter	received	from MG	T confirm	ning will n	ot happen again								
	CH₄	-	-	-				-	31.4	22.2				-	-	-					
Dec 2007	CO ₂	18	15	12.5				11.8	8.1	3.1		des	stroyed	0.7	8.9	8.6					
	O ₂	2.2	7.2	11.2				8.4	12.2	15.5	destroyed			19	8.5	9.5					
	CH₄	-	24.1	18				-	-	-				-	-	-					
June 2008	CO ₂	18.8	5.7	3.1				103	7.6	4.7	destroyed			0.1	9.5	6.2					
	O ₂	1.3	15.8	17.1				9.9	13.1	14.9	destroyed Penlacement here to be			20.1	10.3	12.4					
Sept 2008	CH ₄	-	26.8	28.3				-	-	-	destroyed - Replacement bore to be drilled in October 2008				-	-					
	CO ₂	17.9	3.9	17.1				15.4	1.8	14.4				0.9	14.7	11					

	O ₂	4	17.2	11.3				7.6	18.1	7.6				19.2	8.1	7								
	CH₄	-	2.2	_																				
25th Sept 2008 LMS sampling	CO ₂																							
	O ₂																							
				Testing	of condiu	ts at weig	ghbridge,	drain nea	ar cell 1, ı	under old	Outlook	gatehous	e 0% methane											
29th Sept 2008	CH₄	-	58.3	49.1																			<u> </u>	
MGT extra sampling	CO ₂	0.9	26.3	29.5																			<u> </u>	
	O_2	19.8	1.3	3.7																				
	CH₄	-	-	-	an Anri	as analys 410. rements																		
30th Sept 2008 LMS sampling	CO ₂				taken ii	n-situ usi attached	ng to the																	
	O_2				measu	end. The rements	will																	
1st October	CH₄	-	5	_	basis ir	ie on a m n conjunc e meeting	ction																	
2008 LMS sampling	CO ₂				betwee	n SITA a	and																<u> </u>	
, -	O_2																							
3rd October	CH₄	-	-	-																			<u> </u>	
2008 LMS sampling	CO ₂																							
	O ₂																							
10th Oct 2008	CH₄		2.9	0.1																			<u> </u>	
MGT extra sampling	CO ₂		6	2.8																				
, 0	O ₂		12.4	18.7																				
20th & 21st October 2008					Nev	w bore dr	rilled										Nev	w bore dri	lled	Ne	ew bore d	rilled		
21st Oct 2008 URS gas meter (PM)	CH₄													0	0	0				0	0	0		
(PM)	CO ₂													0.4	0	9.3				4	5.4	1		

	O ₂											20.9	21.5	8.7				17.5	14.5	20.7			
	H₂S ppm											0	0	0				0	0	0			
	CO ppm											0	0	0				13	539	475			
	CH₄	0	14	0.6	0	60.2	34.9	0	0	0		0			0	0	0		0		0	0	0
	CO ₂	6	9.7	3.4	13.4	33.1	17.9	7.2	9.8	4.2		2.6			4.3	6.6	13.7		5		1.6	3	4.7
22nd Oct 2008 URS gas meter (AM) LFG 7 drilled	O ₂	14.8	12.8	17.8	4.5	0	4.4	14.3	11.9	16.9		19.6			16	13.2	4.6		14.2		20.1	19.5	17.9
LFG 7 drilled	LEL	0	>100	12	0	>100	>100	0	0	0		0			0	0	0		0				
	H₂S ppm	0	0	0	0	0	0	0	0	0		0			0	0	0		0		0	0	0
	CO ppm	0	0	0	0	2	163	0	0	0		0			158	435	58		285		0	466	175
23rd Oct 2008	CH₄																	0	0	0	0	0	0
LMS gas meter (PM)	CO ₂																	4.1	4	2.8	6.8	3.9	4.8
` ,	O ₂																	16.6	12.6	18.4	11.4	17.4	15.8
	CH₄	0	11.6	0.4	0	60.9	60.4	0	0	0		0	0	0	0	0	0						
24th Oct 2008 EDL gas meter (AM)	CO ₂	8.2	12.1	0.4	13.5	31.8	26.9	10.6	4.8	4.4		4.5	8.9	8.9	5.4	8.6	13.9						
(AW)	O ₂	11.7	6.2	18.4	4.2	0	0.1	9.8	15.8	15.9		4.5	9.2	8.8	12.5	9.4	3.4						
	CH ₄		0.2		0	61.3	61.8	0.0	10.0	10.0			0.2	0.0	12.0	0.1	0.1						
27th Oct 2008 EDL Gas meter						32.9	29.7																
EBE Gao motor	CO ₂				13.1																		
	O ₂				6.5	0	0																\vdash
	CO ₂																						\vdash
28th Oct 2008 SITA QRAE	O ₂																						\vdash
SITA QIVAL	LEL																						\vdash
	H₂S ppm CO ppm																						$\vdash \vdash \vdash$
29th October LMS gas meter	CO ppm CH₄				0	54.4	55.4	0	0	0													\Box
LIVIO gas metel	CO ₂				13	29.7	29.1	7.9	7	3.5													$\vdash \vdash \vdash$
	CO ₂				13	29.7	29.1	7.9	7	3.5													

	O ₂							12.6	13.7	16													
29th October LMS pressure meter					measu Gas we change flow an	e pressured in bo ell 7 orificed to incre d influen d pressu	res. e plate ease ce																
	CH₄													0	0	0	0	0	0	.	0	0	0
30th October EDL gas meter	CO ₂													1.1	6.5	8.3	14	4.4	3.9	Pulling up water	7.3	2.7	3.2
	O ₂													19.7	10.9	8.1	3.3	16.4	10.2	wate.	9.2	11.8	10.8
	CH₄	0.3	0.8	0	0	54.5	58.5	0	0	0		0	0	0	0	0	0	0	0		0	0	0
	CO ₂	11	2.3	0.4	12.2	29.9	30	9.4	8.2	4.3		3.8	0	0	6.5	8	10.1	4.2	3.8	Pulling	7.9	2.6	3.8
31st October MGT	O ₂	9.2	18.6	20.4	8.1	1.3	0.6	11.1	12.3	15		17.3	20.9	21	11	8.5	8	17.2	10.1	up water	7.4	11.3	9.4
	H₂S ppm	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0
	CO ppm	2	3	2	6	8	11	3	2	2		0	0	0	7	124	4	0	9		3	4	48
	CH₄				0	11	10.7																
6th November LMS	CO ₂				57	38	0																
	O ₂				56	30	0																
6th November		LFG 1E monitor has be favour accurat	o adjacer 3. Regulating of LF en reduce of the mo te implan tion in LF	er G 1 ed in ore t type	bores of from ex cell 1.	ve pressudue to inf extraction	luence wells in																
11th November					Gas w	ell drilling 1	g in cell																
12th November LMS	CH ₄				0	0.2	0																
13th November EDL Meter	CH₄																						

	CO ₂																								
	O ₂																								
17th November																									
21st November	CH ₄	0	0.2	0	0	1.6	0	0	0	0				0	0	0	0	0	0	0	0		0	0	0
SITA meter	CO ₂	8.3	1.6	1	0.1	0.5	0.2	10.2	7.7	6				6.3	7	6.6	8.8	10.2	14.2	4.3	6.5	Pulling up water	10.4	3.5	3.1
	O ₂	13.3	19.4	20.1	20.7	20.2	21.2	10.1	12.8	13				15.6	12.6	12.1	13.3	7.9	4.5	17.7	7.7		7.4	5.6	5
	CH₄				0	0	0																		
28th November SITA Meter	CO ₂				0	0	0																		
	O ₂				20.3	20.4	20.4																		
5th December																									
	CH₄				0	0.1	0.4							0	0	0							0	0	0
5th December SITA Meter with Meinhardt	CO ₂				0	0.1	0.1							3	4.3	2							9	5	2.4
QA/QC	O ₂				21	21	20.8							18.1	15.8	15.1							7	4.1	3.5
	CH₄																								
6th December SITA Meter	CO ₂																								
	O ₂																								
	CH₄																								
7th December SITA Meter	CO ₂																								
	O ₂																								
Date	_	GAS			LF	G 8	1		LFG	8A	LFG	8B	LFG 8C	LFG 8D	,	LFG 8E	_	LFG 8F		LFG 8G		LFG 8H	_		
		(%) v/v	1.5-	2.5m	4.5-	5.5m	7.5-8	3.5m									+						_		
Mar 1999		CH ₄																							
iviai 1999		CO ₂															_						4		
		O ₂																							

	CH₄						
Sept 1999	CO ₂						
	O_2						
	CH₄						
Jan 2000	CO_2						
	O ₂						
	CH₄						
Apr 2000	CO ₂						
	O ₂						
	CH ₄						
May 2000	CO ₂						
	O ₂						
	CH ₄						
June 2000	CO ₂						
	O_2						
	CH ₄						
Aug 2000	CO ₂						
	O ₂						
	CH ₄						
Dec 2000	CO ₂						
	O ₂						
	CH₄						
Mar 2001	CO ₂						
	O_2						

CH, CO,			1	1					
Column		CH₄							
Cityle C	June 2001	CO₂							
Cctober 2001 Cctober 2002 Cctober 2002<		O ₂							
CO		CH₄							
Chi	October 2001	CO₂							
March 2002 Co Co Co Co Co Co Co C		O ₂							
Mar 2002 CO2		CH₄							
Mar 2002 CC CC CC CC CC CC CC	January 2002	CO ₂							
Mar 2002 CO2 Image: CO2		O_2							
Column C		CH₄							
CH4 CO2 CO2 CO3 CO4 CO5	Mar 2002	CO ₂							
June 2002 CO ₂ CO ₃ CO ₄ CO ₅ CO ₆ CO ₇		O_2							
CO2 CO2 CO3 CO3 <td></td> <td>CH₄</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		CH₄							
Sept 2002 CH4 Image: CH4 control of the control of	June 2002	CO ₂							
Sept 2002 CO2 CO3		O_2							
CO2 CO2 CH4 CO2 CO2 CO2 CO2 CO3 CH4 CO3 CH4 CO3 CH4 CO4 CO2 CO3 CO4 CO4		CH₄							
Dec 2002 CO2 CO3 CO4 March 2003 CO2 CO3 CO4	Sept 2002	CO ₂							
Dec 2002 CO2 CO3 CO4 CO3 CO4 CO		O ₂							
March 2003 CO ₂ CH ₄ CO ₂ CO ₂ CO ₂ CO ₂ CO ₃ CO ₄ CO ₂ CO ₂ CO ₃ CO ₄ CO ₅ CO ₆ CO ₇ CO ₈ CO ₈ CO ₈ CO ₈ CO ₈ CO ₈ CO ₉ CO ₉ CO ₉ CO ₉ CO ₈ CO ₉		CH₄							
March 2003 CO ₂ CO ₂ CO ₂ CO ₂ CO ₂ CO ₃ CO ₄ CO ₅ CO ₅ CO ₆ CO ₇ CO ₇ CO ₈ C	Dec 2002	CO ₂							
March 2003 CO ₂ CO ₂		O_2							
		CH₄							
	March 2003	CO ₂							
		O_2							

	CH₄						
June 2003	CO ₂						
	O_2						
	CH₄						
Sept 2003	CO ₂						
	O ₂						
	CH₄						
Dec 2003	CO ₂						
	O ₂						
	CH₄						
March 2004	CO ₂						
	O ₂						
	CH₄						
June 2004	CO ₂						
	O_2						
	CH₄						
Sept 2004	CO ₂						
	O ₂						
	CH₄						
Dec 2004	CO ₂						
	O ₂						
	CH₄						
June 2005	CO ₂						
	O_2						

		T T	1					
	CH₄							
Dec 2005	CO₂							
	O ₂							
	CH₄							
June 2006	CO ₂							
	O ₂							
	CH₄							
Dec 2006	CO₂							
	O ₂							
June 2007								
	CH₄							
Dec 2007	CO ₂							
	O ₂							
	CH₄							
June 2008	CO ₂							
	O ₂							
	CH₄							
Sept 2008	CO ₂							
	O ₂							
	CH₄							
25th Sept 2008 LMS sampling	CO ₂							
	O ₂							
29th Sept 2008 MGT extra sampling	CH₄							

<u> </u>	CO ₂							
	O_2							
	CH₄							
30th Sept 2008 LMS sampling	CO ₂							
	O ₂							
1st October 2008 LMS	CH₄							
sampling	CO ₂							
	O_2							
	CH₄							
3rd October 2008 LMS sampling	CO ₂							
	O ₂							
10th Oct 2008 MGT	CH₄							
extra sampling	CO ₂							
	O ₂							
20th & 21st October 2008			New bore drilled					
	CH₄	0	0	2.3				
	CO ₂	2.8	6.5	12.5				
21st Oct 2008 URS gas meter (PM)	O ₂	19.7	12.4	2.3				
	H ₂ S ppm	0	0	0				
	CO ppm	27	118	549				
22nd Oct 2008 URS gas meter (AM) LFG 7 drilled	CH ₄	0	0	2.2				
LFG / arillea	CO ₂	2.5	7.5	11.9				
		-		-				
	O_2	19.3	8.9	1.8				

	H₂S ppm	0	0	0				
	CO ppm	26	49	316				
23rd Oct 2008 LMS gas meter (PM)	CH₄ CO₂	1.8	6.9	9.4				
3.1. ()	O ₂	18.3	5.4	1.4				
	CH₄			***				
24th Oct 2008 EDL gas meter (AM)	CO ₂							
	O_2							
	CH₄	0	0	2.4				
27th Oct 2008 EDL Gas meter	CO ₂	1.4	7.2	7.4				
	O_2	17.7	2.5	1				
	CO ₂							
	O_2							
28th Oct 2008 SITA QRAE	LEL							
	H₂S ppm							
	CO ppm							
	CH ₄	0	0	2.3				
29th October LMS gas meter	CO ₂	1	6.9	4.3				
	O ₂							
29th October LMS pressure meter								
	CH₄							
30th October EDL gas meter	CO ₂							
	O ₂							
31st October MGT	CH₄	0	0.1	2.3				
	CO ₂	1.3	7.7	5.5				

	O ₂	16.4	1.3	0.2								
	H ₂ S ppm	0	0	0								
	CO ppm	17	18	42								
	CH ₄											
6th November LMS	CO ₂											
	O ₂											
6th November												
11th November												
12th November LMS	CH ₄											
	CH₄	0	0.1	2.2								
13th November EDL Meter	CO ₂	0.7	17.7	1.2								
	O ₂	10	7.6	0								
17th November												
21st November	CH ₄	0	0.2	2.6								
SITA meter	CO ₂	1.7	10.3	5.4								
	O ₂	12.3	0.4	0.6								
	CH ₄	0	0.2	2.5								
28th November SITA Meter	CO ₂	1.9	10.7	5.8								
	O ₂	15.7	0.5	0.7								
5th December												
	CH ₄	0	0.1	1.8	0	0	0	0	0	0	0	0
5th December SITA Meter with Meinhardt QA/QC	CO ₂	2	6.7	6.4	0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.3
<i>⊈</i> n <i>q</i> o	O ₂	15.1	8.7	1.3	19.6	19.6	19.6	19.7	19.8	19.8	20	20
6th December SITA Meter	CH ₄	0	0.2	1.8	0	0	0	0	0	0	0	0

	CO ₂	1.9	8.9	6.5	0.1	0.1	0.2	0	0	0.1	0.2	0.4
	O ₂	15.3	5	1.5	20.7	20.6	20.7	20.8	20.8	20.4	20.1	20
	CH₄	0	0.2	1.6	0	0	0	0	0	0	0	0
7th December SITA Meter	CO ₂	2.1	9.4	6.6	0.1	0	0.1	0	0	0.2	0.1	0.3
	O ₂	15.2	4.1	1.4	20.8	20.8	20.9	21.3	21.1	20.2	20.2	20.3

Date	GAS		LFG 9		Temp bore along drive	GW bore 11	GW bore 5a	GW bore 5b	GW bore 5c
	(%) v/v	1.5-2.5m	4.5-5.5m	7.5-8.5m	2.0m				
	CH₄								
Mar 1999	CO ₂								
	O_2								
	CH₄								
Sept 1999	CO ₂								
	O ₂								
	CH₄								
Jan 2000	CO ₂								
	O_2								
	CH₄								
Apr 2000	CO ₂								
	O_2								
	CH₄								
May 2000	CO ₂								
	O ₂								
June 2000	CH ₄								

CO ₂ O ₂	
CH ₄	
Aug 2000 CO ₂	
CH ₄	
Dec 2000 CO ₂	
CH ₄	
Mar 2001 CO ₂	
CH ₄	
June 2001 CO ₂	
CH ₄	
October 2001 CO ₂	
CH ₄	
January 2002 CO ₂	
CH ₄	
Mar 2002 CO ₂	
June 2002 CH ₄	

	CO ₂				
	O_2				
	CH ₄				
Sept 2002	CO ₂				
	O ₂				
	CH ₄				
Dec 2002	CO ₂				
	O ₂				
	CH₄				
March 2003	CO ₂				
	O ₂				
	CH ₄				
June 2003	CO ₂				
	O ₂				
	CH₄				
Sept 2003	CO ₂				
	O ₂				
	CH₄				
Dec 2003	CO ₂				
	O ₂				
	CH₄				
March 2004	CO ₂				
	O ₂				
June 2004	CH₄				

	CO ₂				
	O_2				
	CH ₄				
Sept 2004	CO ₂				
	O_2				
	CH₄				
Dec 2004	CO ₂				
	O_2				
	CH ₄				
June 2005	CO ₂				
	O_2				
	CH ₄				
Dec 2005	CO ₂				
	O ₂				
	CH₄				
June 2006	CO ₂				
	O ₂				
	CH ₄				
Dec 2006	CO ₂				
	O_2				
June 2007	-				
	CH ₄				
Dec 2007	CO ₂				
	O ₂				

	CH ₄				
June 2008	CO ₂				
	O ₂				
	CH ₄				
Sept 2008	CO ₂				
	O ₂				
	CH ₄				
25th Sept 2008 LMS sampling	CO ₂				
	O ₂				
	CH ₄				
29th Sept 2008 MGT extra sampling	CO ₂				
	O ₂				
	CH ₄				
30th Sept 2008 LMS sampling	CO ₂				
	O_2				
	CH ₄				
1st October 2008 LMS sampling	CO ₂				
	O ₂				
	CH₄				
3rd October 2008 LMS sampling	CO_2				
	O ₂				
10th Oct 2008 MGT extra sampling	CH₄				
	CO_2				

	O ₂							
20th & 21st October 2008	32		New bore drilled					
	CH₄	0	0	0				
	CO ₂	0.4	2.3	4.9				
21st Oct 2008 URS gas meter (PM)	O_2	17.1	16.9	15.6				
	H₂S ppm	0	0	0				
	CO ppm	196	170	0				
	CH₄							
	CO ₂							
22nd Oct 2008 URS gas meter (AM) LFG 7 drilled	O_2							
LFG 7 drilled	LEL							
	H₂S ppm							
	CO ppm							
	CH₄	0	0	0				
23rd Oct 2008 LMS gas meter (PM)	CO ₂	0.7	3.2	5.2				
	O ₂	16.4	15.3	13.9				
	CH₄							
24th Oct 2008 EDL gas meter (AM)	CO ₂							
	O ₂							
	CH₄					0		
27th Oct 2008 EDL Gas meter	CO ₂					0		
	O_2					20.7		
28th Oct 2008 SITA QRAE	CO ₂				n/a			
	O ₂				17.1			

	LEL				0				
	H₂S ppm				0				
	CO ppm				17				
	CH ₄						0	0	0
29th October LMS gas meter	CO ₂						0	0.4	0.4
	O ₂								
29th October LMS pressure meter									
	CH ₄	0	0	0	0	0			
30th October EDL gas meter	CO ₂	0.2	4.2	5.5	0.1	1.4			
	O ₂	18.7	15.6	14.6	17.9	16.7			
	CH ₄	0	0	0		0	0	0	0
	CO ₂	1.8	4.8	4.4		0.5	0.3	1.4	1
31st October MGT	O ₂	15.2	14.9	16		20.1	20.8	20	20.1
	H₂S ppm	0	0	0		0	0	0	0
	CO ppm	535	50	3		2	2	0	0
	CH₄								
6th November LMS	CO ₂								
	O ₂								
6th November									
11th November									
12th November LMS	CH₄								
	CH₄				0				
13th November EDL Meter	CO ₂				0				
	O ₂				17.4				

17th November							
21st November	CH₄	0	0	0			
SITA meter	CO ₂	3.7	5	6.1			
	O ₂	9.8	14.9	13.9			
	CH₄						
28th November SITA Meter	CO ₂						
	O ₂						
5th December							
	CH₄						
5th December SITA Meter with Meinhardt QA/QC	CO ₂						
4,140	O ₂						
	CH₄						
6th December SITA Meter	CO ₂						
	O ₂						
	CH₄						
7th December SITA Meter	CO ₂						
	O ₂						

Table: Hallam Road methane monitoring data supplied by SITA (laboratory data)

	GAS		LFG 1			LFG 1B			LFG 2			LFG 3			LFG 4			LFG 5			LFG 6			LFG 7			LFG 8	
Date	(%) v/v	1.5- 2.5m	4.5- 5.5m	7.5- 8.5m	1.5- 2.5m	4.5- 5.5m	7.5- 8.5m	1.5- 2.5m	4.5- 5.5m	7.5- 8.5m	1.5- 2.5m	4.5-	7.5- 8.5m	1.5- 2.5m	4.5- 5.5m	7.5- 8.5m												
		2.5111		0.5111	2.5111		0.5111	2.5111	5.5111	0.5111	2.5111	J.JIII	0.5111	2.5111	5.5111	0.5111	2.0111	3.3111	0.5111	2.5111	5.5111	0.5111	2.5111	3.3111	0.5111	2.5111	5.5111	0.5111
June-	CH₄		5.7			0																						
2005	CO ₂																											
	O ₂																											
	CH ₄		8.2			0																						
Dec 2005	CO ₂																											
	02																											
	CH₄								10.2																			
June 2006																												
2006	CO ₂								2																			
	O ₂								20.5																			
Dec	CH₄			0.27								0																— —
2006	CO ₂			0.55								0																<u> </u>
	O ₂			20.4								20.8																
	CH₄																											
Dec 2007	CO ₂			0			0						0															
				0			0																					
	O ₂																											
June	CH₄																											
2008	CO ₂			0			0						0															
	O ₂																											
	CH₄			1.9																								
Sept 2008	CO ₂																											
29th	O ₂																											
Sept	CH₄			8.5																								

extra sampling	CO ₂																
	O ₂																
1011- 0-4	CH₄	0.26	0														
10th Oct extra sampling	CO ₂																
Jamping	O ₂																
21st Oct MGT	CH ₄	0.014			51	0			0			0	0.02		0		2.6

Date	0::0				Temp bore along	GW bore	GW bore	GW bore	GW bore
2010	GAS (%)	1.5-	LFG 9 4.5-	7.5-	drive	11	5a	5b	5c
	v/v	2.5m	5.5m	8.5m	2.0m				
June-	CH₄								
2005	CO ₂								
	O ₂								
_	CH ₄								
Dec 2005	CO ₂								
	O ₂								
	CH₄								
June 2006	CO ₂								
	O ₂								
	CH ₄								
Dec 2006	CO ₂								
	O ₂								
	CH₄								
Dec 2007	CO ₂								
	O ₂								
	CH₄								
June 2008	CO ₂								
	O ₂								
	CH₄								
Sept 2008	CO ₂								
	O ₂								
29th	CH₄								
Sept extra	CO ₂								
sampling	O ₂								
	CH₄								
10th Oct extra	CO ₂								
sampling	O ₂								
21st Oct MGT	CH ₄			0					

mgt gas chromatography report: Hallam Road (Supplied SITA 9 January 2009)

Environmental Consulting Pty. Ltd

A.B.N. 50 005 085 52

3 Kingston Town Close, Oakleigh, Victoria, 3166, Australi Postal Address: P.O. Box 276, Oakleigh, Victoria, 3166, Australi Telephone: (03) 9564 705 Fax (03) 9564 719 Email: mgt @mgtenv.com.a

22nd December 2008

Baker & Mckenzie Level 39, Rialto 525 Collins St Melbourne, Victoria 3000

Att : Ms Angela Cook

Dear Angela,

SITA HALLAM GAS PROBE DETERMINATION - DECEMBER 2008.

Please find attached our Report No. 238578 relating to the samples that were obtained from the SITA Hallam site on the 12^{th} December 2008.

The soil gas was sampled in accordance with our in-house sampling procedure – AISOP002, a copy of which is included as Attachment 1, refer to In-situ Gas Probe Sampling Procedure section, mgt have reported the Landfill Gases – CO2, O2, CH4, CO, S2 & Balance (predominantly Nitrogen) obtained from the GA2000 Landfill Gas Analyser – refer Sheet 2 of 2 sheets. Methane sampling & analysis has been undertaken according to MGT Air Method AO4 and MGT Inhouse Method AO6 (Gas Bag – FID). Prior to sampling all gas probes are purged for 2-3 minutes and readings obtained once the values have stabilised (as per mgt method AISOP002 – refer In-situ Probe Procedure for measuring Pressure and Landfill gases – included as Attachment 1)

Detectable levels of methane were found within LFG 1B -5.5m, LFG 4 - 8.5m, LFG 7 - 8.5m, LFG 8 - 5.5m, LFG 8 - 8.5m, LFG 8C, LFG 8D, LFG 8E, and Gas Extraction Well adjacent to LFG8.

As requested by Baker & Mckenzie the following gas locations have been analysed for volatile GCMS via an Activated Carbon Tube in accordance with the USEPA 8260 methodology;

- LFG8 12th December 2008
- Gas Extraction Well 37 12th December 2008

Results obtained for Volitile Organic Compounds via an Activated Carbon Tube have been expressed using an Overlaid Chromatogram – included as Attachment 2

If you have any questions relating to this report please do not hesitate in contacting myself on the above phone number.

Yours faithfully,

Stephen Curwood Project Officer.

Email: stephenc@mgtenv.com.au

Environmental Consulting Pty. Ltd.

A.B.N. 50 005 085 521

3 Kingston Town Close, Oakleigh, Victoria, 3166, Australia Postal Address: P.O. Box 276, Oakleigh, Victoria, 3166, Australia Telephone: (03) 9564 7705 Fax (03) 9564 7190 Email: mgt @mgtenv.com.au

ANALYSIS REPORT – mgt Report No. 238578 Baker & Mckenzie Level 39, Rialto 525 Collins St Melbourne, Victoria 3000

On the 12th December 2008 samples were collected from soilgas probes located at SITA Hallam. Soil Gas vapour samples were collected from twenty-four locations. Gas probe samples were collected as detailed within mgt In-house Method AISOP002 – refer In-situ Probe Procedure for measuring Pressure and Landfill gases.

Sampling & analysis was undertaken from twenty-four locations via the GA2000 Landfill gas analyser. Prior to sampling all gas probes are purged for 2-3 minutes and readings obtained once the values have stabilised. For each gas probe location Landfill Gases – CO2, O2, CH4, CO, S2 & Balance (predominantly Nitrogen) have been sampled and reported.

Methane sampling & analysis was undertaken from the following gasprobes;

LFG1B (2.5m) - 12th December 2008	LFG8 (2.5m) - 12th December 2008
LFG1B (5.5m)- 12th December 2008	LFG8 (5.5m)- 12th December 2008
LFG1B (8.5m)- 12 th December 2008	LFG8 (8.5m)- 12th December 2008
LFG4 (2.5m) - 12th December 2008	LFG8A - 12th December 2008
LFG4 (5.5m) - 12th December 2008	LFG8B - 12th December 2008
LFG4 (8.5m) - 12th December 2008	LFG8C - 12th December 2008
LFG6 (2.5m) - 12th December 2008	LFG8D-12th December 2008
LFG6 (5.5m) - 12th December 2008	LFG8E - 12th December 2008
LFG6 (8.5m) - 12th December 2008	LFG8F - 12th December 2008
LFG7 (2.5m)- 12th December 2008	LFG8G - 12th December 2008
LFG7 (5.5m) - 12th December 2008	LFG8H - 12th December 2008
LFG7 (8.5m) - 12th December 2008	Gas Extraction Well 37 - 12th December 2008

Confirmation methane gas bag samples were also sampled and analysed within the lab. Sampling was undertaken as per as per MGT Air Method AO4. Analysis as per MGT Inhouse Method AO6 (Gas Bag – FID).

Analytical Results :

Refer Sheets 2 of 2 sheets.

Report No. 238578 Sheet 1 of 2 Sheets.

> P. Richardson Project Manager.

M. Wright. Lab Manager.

_ lixifth.

Environmental Consulting Pty. Ltd.

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal Address: P.O. Box 276, Oakleigh, Victoria, 3166, Australia Telephone: +613 3964 7055 Fax+ 61 3 3664 7050 Email: mgf@mgferv.com.au

mgt GAS PROBE MONITORING - Field Data Sheet.

Client : Baker & McKenzie Site : Sita Hallam Rd Landfill

Barometric Pressure : 1007 Hpa

In-Situ Landfill Gas Analyser : GA2000

Gas	Sample	Probe	Sample		In-Situ Read	lings via f	ortable (as Analys	er		Gas Bag	Gas Bag	Gas Bag
Probe I.D.	Date	Depth	Time	Methane	Peak Methane	CO2	02	Balance	H2S	co	I.D	Lab No.	Methane
		(m)	(Hours)	%v/v	%v/v	%v/v	%v/v	%v/v	ppm	ppm			%v/v
LFG 1B	12.12.08	2.5	1016	<0.1	<0.1	< 0.1	20.3	79.7	<1	<1	-	-	-
LFG 1B	12.12.08	5.5	1021	0.5	0.6	< 0.1	20.4	79.0	<1	<1	LFG1B - 5.5	08-De05382	0.3
LFG 1B	12.12.08	8.5	1026	<0.1	<0.1	< 0.1	20.6	79.4	<1	<1	-	-	-
LFG 4	12.12.08	2.5	1057	<0.1	<0.1	5.5	15.8	78.5	<1	<1	-		
LFG 4	12.12.08	5.5	1100	<0.1	<0.1	3.8	16.1	80.1	<1	<1	-	-	-
LFG 4	12.12.08	8.5	1102	0.1	0.1	1.4	18.8	79.7	<1	<1	LFG4 - 8.5	08-De05383	< 0.002
LFG 6	12.12.08	2.5	1113	<0.1	<0.1	4.1	17.6	78.3	<1	<1	-	-	-
LFG 6	12.12.08	5.5	1118	<0.1	<0.1	8.6	6.2	85.1	<1	<1	LFG6 - 5.5	08-De05384	0.02
LFG 6	12.12.08	8.5	1120	-	-	-		-	<1	<1	Moisture presen	t unable to extra	ct sample
LFG 7	12.12.08	2.5	1133	<0.1	<0.1	9.7	5.8	84.4	<1	<1	-	,	
LFG 7	12.12.08	5.5	1136	<0.1	<0.1	6.0	3.4	90.6	<1	<1	-		
LFG 7	12.12.08	8.5	1140	<0.1	0.1	2.5	2.8	94.6	<1	<1	LFG7 - 8.5	08-De05385	0.003
LFG 8	12.12.08	2.5	1153	<0.1	<0.1	2.3	14.5	83.2	<1	<1	-		
LFG 8	12.12.08	5.5	1157	0.2	0.2	10.4	1.7	87.7	<1	<1	-	-	-
LFG 8	12.12.08	8.5	1200	8.0	0.9	8.3	0.1	90.9	<1	1	LFG8 - 8.5	08-De05386	0.4
LFG 8A	12.12.08	-	1325	<0.1	<0.1	0.1	20.8	79	<1	<1	-	-	
LFG 8B	12.12.08	-	1329	<0.1	<0.1	0.1	20.9	79	<1	<1	-		
LFG 8C	12.12.08	-	1333	0.1	0.1	0.2	20.9	78.8	<1	<1	-		
LFG 8D	12.12.08	-	1341	0.1	0.1	0.1	21.0	78.9	<1	<1	-		-
LFG 8E	12.12.08	-	1349	0.1	0.1	0.1	20.9	78.9	<1	<1	-	-	-
LFG 8F	12.12.08	-	1355	<0.1	<0.1	0.2	21.1	78.6	<1	<1	-	-	-
LFG 8G	12.12.08	-	1358	<0.1	<0.1	0.6	20.8	78.5	<1	<1	-	-	-
LFG 8H	12.12.08	-	1402	<0.1	<0.1	8.0	20.8	78.4	<1	<1	-		
Extraction Well 37	12.12.08	-	1313	56.8	57	44.7	0.1	0	38	135	Extraction Well 37	08-De05387	60

Report No. 238578 Sheet 2 of 2 sheets

ATTACHMENT 1

Gas Probe Monitoring Procedure - AISOP002

mgt Environmental Consulting Pty Ltd

ACN 005 085 521 ABN 50 005 085 521

3 Kingston Town Close, Oakleigh, 3166, Oakleigh, Victoria, Australia Postal Address: PO Box 276 Oakleigh, 3166, Victoria, Australia Telephone – 03 9564 7055 Facsimile – 03 9564 7190 E.mail – mgt@mgtenv.com.au

Gas Probe Monitoring - AISOP002

Scope

This procedure is to be used for the monitoring of in-situ soil gas probes, provided with a capped top or a suitable septum that can be pierced using a syringe, or alternatively temporary gas probes provided with disposable probe heads and open end for sampling purposes.

Samples can be extracted from the pierced septum after a pressure determination has been conducted using a digital manometer, or alternatively directly from the top of the capped probe.

Samples can be collected using the following procedures:

MGTAO2 Sampling Methods for Hot Gases from Stacks using Silica Gel, Charcoal &

Specialised Adsorption Tubes.

MGTAO3 Standard procedures - Sampling methods for gases using integrated gas bag

samples

MGTAO4 Standard procedures - Sampling methods using Impinger Bubbler collection.

Vic EPA 4230 Sampling Volatile Organic Compounds - VOC's

AS4323.3 Odour Dynamic Olfactometry

NIOSH Assorted NIOSH Methods for specific analytes

Apparatus

Ambient or Soilgas Field Sheet Landfill Gas analyser (CH4, O2, CO2, CO, H2S) - on-site instrument Photo Ionisation Detector (PID) - on-site instrument Barometer - to measure atmospheric pressure. Clean Teflon or Tygon tubing for sampling (1/4 inch & 3/16 inch ID) Air Sampling Pumps, Low Flow Restrictors, Calibrator & Charger Suitable adsorbance tubes (CT's, SG, etc) & Sample labels Stainless Steel Sampling Probes Disposable probe heads or Retractable probe head system Hammer or Slam bar Temperature Probe Dry gas flow meter Gas Bag Sample Vacuum Drum & Tedlar sampling bags Esky and ice SGE Needle - NLL-5/14 Digital Manometer - capable of reading Pascals

In-situ Gas Probe Sampling Procedure

The in-situ gas probe construction is not covered within this procedure.

- 1. Samples can be retrieved using any of the procedures and methods listed above.
- 2. Prior to sampling a calibrated air sample pump (~500 ml/min) is connected to the top of the probe and vapour extracted for 2-3 minutes (Typically 3 holding volumes). Alternately the Landfill Gas analyser can also be used to purge the bore prior to obtaining readings. If during this purging or at anytime during normal sampling the air sample pump stops due to negative pressure within the probe then sampling should be abandoned. The nominal cause for this is either a blockage of the probe due to soil or groundwater or the probe head is inserted in a clay type soil that contains minimal or no soil voids or vapor.
- For sorbent tube sampling or to determine the ability of the probe to generate gas vapour the following sampling procedure is adopted – this procedure has the dual ability of providing a secondary sample tube that can be used in the event the primary tube is overloaded due to high level of contaminant gas within the bore.

- 4. Carbon tube #2 is submitted for analysis.
- In the event that Carbon tube #2 is overloaded and shows breakthrough the concentration of the gas in the bore can be determined from Carbon tube #1, unless breakthrough is also shown in this tube.
- In the event that Carbon Tube #2 does not show break through Carbon tube #1 can still analysed and reported to show the gas probes vapour generating capacity over time.
- In the event that the probe does not contain any contaminant gas the reporting of the two tubes shows that any low level positives reportable from Carbon Tube #1 are not diluted below the detection limit in Carbon Tube #2 due to the increased sample volume on that tube.
- 8. Field QAQC Requirements:

Field Duplicate – 1 in 10 or one every batch – where the batch is <10 Field/Trip Blank - 1 in 10 or one every batch – where the batch is <10 Equipment Blank – One every batch (Temporary Probe Procedure only) Method Blank – One every batch

Note

- To minimise streamlining Sorbent Tubes should be positioned vertical to the flow of gas vapour through the tube.
- 10. At the completion of sampling the probe is purged again for 1-2 minutes. As with the pre purge if at anytime during this purge the air sample pump stops due to negative pressure within the probe then the sampling run is abandoned.

Samples can then be submitted to the laboratory for analysis after being appropriately labeled as detailed within MGT In-house Procedure MGT AO7. Transportation of samples to the laboratory should be conducted immediately on ice.

In-situ Probe Procedure for measuring Pressure and Landfill gases

- The integrity of the bore must be examined and recorded ensuring an adequate seal has been formed at the bore cap to prevent contamination from outside sources.
- Record atmospheric pressure and weather conditions.
- Connect sample tubing to appropriately sealed gas probe fitting (i.e quick connect fitting, septum etc). If end cap is not provided then an alternate temporary endcap should be applied to minimise outside contamination. If a temporary endcap can not be used then temporary tubing should be inserted as close to the screened interval as possible to minimise outside contamination.
- If Pressure readings are required zero the manometer (using manufacturers procedures) and connect the digital manometer directly to the probe inlet. Record the Manometer reading when stabilised on the field data sheet, if a variance is noticed within the reading record the pressure range when stabilised.
- 5. Calibrate and zero the Landfill gas analyser.
- Purge gasprobe using calibrated sample pump for 2-3 minutes (typically 3 holding volumes).
 Alternately the Landfill gas analyser can be used to purge the gasprobe prior to obtaining gas readings typically 2-3 minutes.
- If the valve does not allow purging as a result of a blockage, kinked filament, groundwater intrusion or a faulty valve temporary tubing must be installed as close to the screened interval as possible to reduce contamination from outside sources.
- 8. Once landfill gas readings have stabilised on the analyser record on the field data sheet.
- If lab confirmation samples are required (i.e methane) connect the Vacuum Chamber with the Tedlar gas bag installed and sample until bag is full (usually 3 minutes).
- If required conduct appropriate air sampling using Adsorbance Tubes, Impingers or Gas Bag sampling techniques, refer relevant analyte methodologies.
- If Pressure readings are required at the completion of sampling measure the pressure within the gas probe using the manometer.
- Samples can then be submitted to the laboratory for analysis after being appropriately labeled as detailed within MGT In-house Procedure MGT AO7. Transportation of samples to the laboratory should be conducted immediately on ice
- NOTE Pressure readings are only applicable on probes that are sealed. Landfill gases are only measured upon request.

Temporary Probe Procedure

- Development of a borehole using standard drilling techniques mechanical or hand auguring can be used to the desired depth. Note that depths greater than 1m normally require the use of a slam bar or drill rig dependent on soil matrix.
- The Stainless steel probe is positioned at the desired sample location with the disposable head attached to the base of the probe
- 3. A Slidebar or hammer is then used to insert the probe head to the desired depth. Please note that a hand auger or mechanical auger can be used to remove the top layer of soil in the event that the soil is very rocky or clay like in nature. In this instance the borehole should be inspected after auguring to determine it has not collapsed prior to inserting the stainless steel probe.
- The probe is then withdrawn by pulling it back up the borehole ~100mm. Care should be taken to
 ensure that the withdrawal of the probe ensures that the disposable head remains in the soil and not
 connected to the probe.
- The probe should be secured so as to prevent it dropping back down into the void. Where pre auguring has occurred a bentonite plug may be used to seal the probe head and ensure that contamination from the outside ambient air does not enter the probe void.
- Samples can be extracted either directly from the stainless steel probe or via insertion of a teflon inner tube to the desired depth.
- 7. A calibrated air sample pump is connected to the top of the probe and the contents of the probe purged so as soil vapor is drawn into the probe. The probe is nominally a small ID stainless or teflon tubing and purging is only necessary for 1-2 minutes at 500 ml/min, subject to depth considerations, to allow for adequate purging of ~ 3 holding volumes. Alternately a Landfill gas analyser or PID can be used to purge the gasprobe prior to obtaining gas readings typically 2-3 minutes. If at anytime during purging the air sample pump stops due to negative pressure within the probe then the sampling run is abandoned.
- 8. For sample retrieval refer sampling procedure above for in-situ probe.

ATTACHMENT 2

GAS CHROMATOGRAM OF:

- 1. OVERLAY OF GAS EXTRACTION WELL 37, LFG8 & TRIP BLANK
- 2. GAS EXTRACTION WELL 37 WITH IDENTIFIED MAYJOR PEAKS
 - 3. TRIP BLANK INTERNAL STANDARDS IDENTIFIED

Overlaid Chromatogram Plots

Plot 1: c:\saturnws\rosults\soquonco\sapb\sapb\184.sms RIC all Plot 2: c:\saturnws\results\sequence\sapb\sapb\182.sms RIC all

GAS EXTRACTION WELL 37 WITH INDENTIFIED MAYJOR PEAKS

TRIP BLANK - INTERNAL STANDARDS

2 SITES WITH LANDFILL METHANE DETECTED

2.1 Landfill address: 890 Taylors Road, Lyndhurst

Landfill licence: ES511

Licence holder: SITA Environmental Solutions

Figure: Taylors Road monitoring bore location plan and data (bores constructed by SITA)

Table: Taylors Road methane monitoring data supplied by SITA

Bore and Sample Date	%CH4	%CO2	%O2	Comments
GMP1				Bore located in Melbourne Water Drain (south side)
24-Oct-08	63.5	32.9	0.08	
27-Oct-08	0	0	20.9	
5-Nov-08	61.8	33	0.2	
12-Nov-08	43.3	30.1	8.0	
19-Nov-08	59.4	34.5	0.4	
25-Nov-08	64.3	33.4	0	
1-Dec-08	33.6	17.8	10.4	
2-Dec-08	33.4	18.1	9.1	
3-Dec-08	0.1	0.1	20.8	
4-Dec-08	0	0.1	20.5	
6-Dec-08	0	0	20.7	Results collected by Meinhardt
7-Dec-08	0.2	2.2	17.5	
8-Dec-08	22.1	17.3	2.3	Results collected by Meinhardt. NOTE: One gas blower not functioning
10-Dec-08	0	0	20.5	
11-Dec-08	0	0	21.3	
12-Dec-08	0	0	20	
15-Dec-08	9.3	4.8	17.3	
17-Dec-08	60.4	30.9	0.4	
18-Dec-08	59.5	30.3	0.6	
19-Dec-08	0	0	20.6	
22-Dec-08	42.8	24.6	0.7	Vacuum to cut-off trench throttled back. Vacuum to cut-off trench increased after sampling period.
23-Dec-08	0	0	20.5	
24-Dec-08	0	0	20.3	
5-Jan-09	0.1	0.1	19.6	
6-Jan-09	0	0.4	18.5	
GMP1A				Bore located in Melbourne Water Drain (south side) adjacent to GMP1
24-Oct-08	65.5	29.8	0	
27-Oct-08	14	19.7	9.3	
5-Nov-08	55.9	29.8	0.6	

12-Nov-08	25.6	22.6	4.2	
19-Nov-08	24.1	19	6.9	
25-Nov-08	30.6	22.7	1.7	
1-Dec-08	9.7	21.5	4.6	
2-Dec-08	7.8	20.2	5.9	
3-Dec-08	7.7	19.2	6.3	
4-Dec-08	0.6	14.6	13.6	
6-Dec-08	0.7	11.6	13.6	Results collected by Meinhardt
7-Dec-08	1.4	12.6	13.8	
8-Dec-08	5	12.7	12.4	Results collected by Meinhardt. NOTE: One gas blower not functioning
10-Dec-08	1.6	12.1	13.4	
11-Dec-08	0.3	1.2	19.8	
12-Dec-08	0	1	19.4	
17-Dec-08	N/A	N/A	N/A	Bore inundated with water. Unable to obtain results.
18-Dec-08	N/A	N/A	N/A	Bore inundated with water. Unable to obtain results.
19-Dec-08	N/A	N/A	N/A	Bore inundated with water. Unable to obtain results.
22-Dec-08	N/A	N/A	N/A	Bore inundated with water. Unable to obtain results.
23-Dec-08	N/A	N/A	N/A	Bore inundated with water. Unable to obtain results.
24-Dec-08	N/A	N/A	N/A	Bore inundated with water. Unable to obtain results.
5-Jan-09	N/A	N/A	N/A	Bore inundated with water. Unable to obtain results.
6-Jan-09	N/A	N/A	N/A	Bore inundated with water. Unable to obtain results.
GMP1B				Bore located in Melbourne Water Drain (north side) directly opposite GMP1
5-Nov-08	1.9	0	16	
12-Nov-08	9.8	2.9	16.7	
19-Nov-08	43.7	27.5	0.5	
25-Nov-08	28.8	15.3	8.6	
1-Dec-08	41.7	27.5	0.4	
2-Dec-08	41.3	27.2	0.4	
3-Dec-08	36.7	26.8	0.4	
4-Dec-08	38.4	27	0.2	
6-Dec-08	36.9	27.1	0.3	Results collected by Meinhardt
7-Dec-08	33.4	26.8	0.6	
8-Dec-08	40.5	27.3	0.5	Results collected by Meinhardt

i .	1	1		
10-Dec-08	26.2	25.7	0.2	
11-Dec-08	13.5	17.6	7.8	
12-Dec-08	18.8	20.4	4.5	
17-Dec-08	35.2	23.2	1.4	
18-Dec-08	35.8	24.9	0.3	
19-Dec-08	5.8	9	12.5	
22-Dec-08	33	23.1	1	Vacuum to cut-off trench throttled back. Vacuum to cut-off trench increased after sampling period.
23-Dec-08	6.6	11.5	10.7	
24-Dec-08	9.5	14.3	7	
5-Jan-09	7.5	17.3	5.1	
6-Jan-09	6.8	17.1	4.4	
GMP1C				
6-Dec-08	0	0.2	20.9	Results collected by Meinhardt
7-Dec-08	0	1.9	19.3	
8-Dec-08	0	2.2	19.5	Results collected by Meinhardt
10-Dec-08	0	2.2	18.7	
11-Dec-08	0	0.3	20.1	
12-Dec-08	0	0.6	19.4	
17-Dec-08	0	0	20.2	
18-Dec-08	0	3.5	16.7	
19-Dec-08	0	2.8	18.1	
22-Dec-08	0	3	15.9	
23-Dec-08	0	3.1	17.7	
24-Dec-08	0	2.7	17.6	
5-Jan-09	0.1	3.2	17	
6-Jan-09	0	3	16.4	
GMP1D				
6-Dec-08	0	0.2	20.8	Results collected by Meinhardt
7-Dec-08	0	0.7	20.3	
8-Dec-08	0	1.4	20.4	Results collected by Meinhardt
10-Dec-08	0	1.6	19.5	

11-Dec-08	l o	0.1	20.2	
12-Dec-08	0	0.9	19.4	
17-Dec-08	0	1.7	18.3	
18-Dec-08	0	2.4	17.6	
19-Dec-08	0	1.9	18.9	
22-Dec-08	0	2	16.8	
23-Dec-08	0	3.1	17.4	
24-Dec-08	0	2	18	
5-Jan-09	0	2.1	18.3	
6-Jan-09	0	2.5	17	
GMP1E				
6-Dec-08	0	0.2	20.8	Results collected by Meinhardt
7-Dec-08	0	0.4	20.6	
8-Dec-08	0	0.6	21	Results collected by Meinhardt
10-Dec-08	0	0.2	20.6	
11-Dec-08	0	0	20.4	
12-Dec-08	0	0.3	19.4	
17-Dec-08	0	0.3	19.8	
18-Dec-08	0	0.2	19.9	
19-Dec-08	0	0.2	20.4	
22-Dec-08	0	0	18.3	
23-Dec-08	0	0.2	20	
24-Dec-08	0	0.1	19.9	
5-Jan-09	0	0.4	19.5	
6-Jan-09	0	1.7	17.2	
EPA BORE LTBH2				EPA installed bore to 1.5m within roadside drain on southern side of Entry Drive
05.11.08	0	2.8	16.4	
12.11.08	1.4	0.6	19.2	
19.11.08	N/A	N/A	N/A	
25.11.08	N/A	N/A	N/A	Bore destroyed due to installation of gas cut-off trench

EPA Bore LTBH1				EPA installed bore to 1.5m located at Melbourne Water Drain
24-Oct-08	0	2	0	
27-Oct-08	0	0.8	17.2	
5-Nov-08	0	0.6	19.2	
12-Nov-08	0.4	0.8	19.2	
19-Nov-08	1.3	2.7	18.9	
25-Nov-08	2.8	3.6	15.8	
1-Dec-08	1.6	7.8	15.4	
2-Dec-08	1	6.9	15.6	
3-Dec-08	0.9	6.3	16.8	
4-Dec-08	0.4	4.8	18.3	
6-Dec-08	0.6	4.2	17.9	Results collected by Meinhardt
7-Dec-08	0.5	3.2	19.6	
8-Dec-08	0.6	3.1	19.7	Results collected by Meinhardt. NOTE: One gas blower not functioning
10-Dec-08	0.3	2.7	19	
11-Dec-08	0.6	2.5	19.9	
12-Dec-08	0.3	2.2	18.8	
17-Dec-08	0	0.5	19.7	
18-Dec-08	0	0.7	19.4	
19-Dec-08	0	0.6	20.2	
22-Dec-08	0	0.9	18.4	
23-Dec-08	0	0.8	19.7	
24-Dec-08	0	0.6	20	
5-Jan-09	0.2	1.4	19.3	
6-Jan-09	0	1.9	17.8	
Gas Trench (Lower)				
6-Dec-08	0	0.2	20.5	Results collected by Meinhardt
7-Dec-08	0	0.1	20.8	
8-Dec-08	0	0.1	20.6	Results collected by Meinhardt
10-Dec-08	0	0	20.3	
11-Dec-08	0.3	0.1	19.5	
12-Dec-08	0	0	19.7	
18-Dec-08	0	0	20.1	

19-Dec-08	l 0	0	19.8	
22-Dec-08	0	0	18.5	
23-Dec-08	0	0	19.9	
24-Dec-08	0	0	19.8	
5-Jan-09	0	0.1	19.5	
6-Jan-09	0	0.1	18.8	
Gas Trench (Upper)				
6-Dec-08	0	0	20.5	Results collected by Meinhardt
7-Dec-08	0	0.1	20.8	
8-Dec-08	0.1	0.1	20.5	Results collected by Meinhardt
10-Dec-08	0	0.1	20.5	
11-Dec-08	61.6	37.3	0.2	Note: EDL power plant shutdown. Gas being flared
12-Dec-08	0	0	19.7	
18-Dec-08	0	0	19.5	
19-Dec-08	0	0	20.2	
22-Dec-08	0	0	18.3	
23-Dec-08	0	0	20.9	
24-Dec-08	0	0	20.5	
5-Jan-09	0	0.1	19.5	
6-Jan-09	0	0.1	18.2	
GMP2				Bore located within site boundary and perimeter 'fill' embankment (2-5m from waste boundary)
24-Oct-08	0.9	2.8	18.6	
27-Oct-08	3.1	4.5	16.3	
5-Nov-08	0	2.4	18.7	
12-Nov-08	0	1.5	18.3	
19-Nov-08	0	1.6	18.7	
25-Nov-08	0	0.7	18	
2-Dec-08	0	0.8	19.9	
15-Dec-08	0	0.2	20.2	
22-Dec-08	0	0.1	19.5	
6-Jan-09	0	1.1	18.3	

GMP2A				Bore located directly opposite GMP2 outside site boundary
24-Oct-08	0	1.4	19.2	
27-Oct-08	0	3.5	17.7	
5-Nov-08	0	3.3	17.1	
12-Nov-08	0	3.6	16.7	
19-Nov-08	0	3.5	18.3	
25-Nov-08	0	3.7	17.1	
2-Dec-08	0	3.9	18.3	
15-Dec-08	0	3.6	19.6	
22-Dec-08	0	7.7	12.6	
6-Jan-09	0	11.3	8.5	
GMP3				
5-Nov-08	0	0	20	
12-Nov-08	0	0	19.4	
19-Nov-08	0	0	20.5	
25-Nov-08	0	0.1	19.4	
2-Dec-08	0	0.3	20.4	
15-Dec-08	0	0.4	19.9	
22-Dec-08	0	2	18.3	
6-Jan-09	0	0.4	19.9	
GMP4				
5-Nov-08	0	0	19.6	
12-Nov-08	0	1.2	17.8	
19-Nov-08	0	3.9	16.3	
25-Nov-08	0	2.6	17.6	
2-Dec-08	0	4.6	15.2	
15-Dec-08	0	3.1	15.4	
22-Dec-08	0	4.3	13.5	
6-Jan-09	0	1.2	17.6	
		<u> </u>		

GMP5				
5-Nov-08	0	0.9	19.1	
12-Nov-08	0	1.7	17.9	
19-Nov-08	0	1.6	19.2	
25-Nov-08	0	1.2	18.1	
2-Dec-08	0	0	18.8	
15-Dec-08	0	0.1	20.1	
22-Dec-08	0	3.2	18.4	
6-Jan-09	0	2.3	16.4	
GMP6				
5-Nov-08	0	4.8	15.6	
12-Nov-08	0	5.9	13.9	
19-Nov-08	0	4.3	17.2	
25-Nov-08	0	2.7	16.3	
2-Dec-08	0	5.6	15.5	
11-Dec-08	0	1.8	18.1	
22-Dec-08	0	2.2	17.1	
6-Jan-09	0	1.6	17.9	
GMP7				
5-Nov-08	0	1.7	18.3	
12-Nov-08	0	0	19.2	
19-Nov-08	0	5.6	16.1	
25-Nov-08	0	4.6	16.3	
2-Dec-08	0	4.6	17.5	
11-Dec-08	0	0	19.6	
22-Dec-08	0	1.8	17.8	
6-Jan-09	0	3.9	16.5	
GMP8				Bore located within site boundary and perimeter 'fill' embankment (2-5m from waste boundary
24-Oct-08	9	6.6	16.1	
27-Oct-08	24.7	28.6	0.97	

	ASSESSMEI FROM VICTO				
Ī	5-Nov-08	I	6.4	ĺ	

5-Nov-08	6.4	8.1	14.3	
12-Nov-08	23.3	25.4	3.4	
19-Nov-08	25.7	28	1.4	
25-Nov-08	0	3.9	16.5	
2-Dec-08	15.2	21.6	6.2	
11-Dec-08	0.1	0.6	20.1	
12-Dec-08	0	0	19.8	
22-Dec-08	20.6	23.3	3.7	
6-Jan-09	22.1	28.1	1	
GMP8a				Bore located directly opposite GMP8 outside site boundary
24-Oct-08	0	2.5	17.2	
27-Oct-08	0	3.6	17.7	
5-Nov-08	0	2.5	17.1	
12-Nov-08	0	2.3	17.4	
19-Nov-08	0	2.4	18.5	
25-Nov-08	0	2.3	17.4	
2-Dec-08	0	2.5	18.8	
15-Dec-08	0	2.4	18.2	
22-Dec-08	0	0.1	19.3	
6-Jan-09	N/A	N/A	N/A	Bore inundated with water. Unable to obtain results.
GMP10				
5-Nov-08	0	6.1	15.6	
12-Nov-08	0	0.1	19.3	
19-Nov-08	0	2.3	13.4	
25-Nov-08	0	0	20.6	
2-Dec-08	0	0	22.6	
11-Dec-08	0	0	20.6	
22-Dec-08	0	0	20.2	
6-Jan-09	0.1	3.3	17.5	
GMP11				

_	•	•	
5-Nov-08	8 0	0.4	18.9
12-Nov-0	0 8	0.7	18.4
19-Nov-0	0.1	1.4	19.3
25-Nov-0		0.2	19.1
2-Dec-08		1	19.7
11-Dec-0		0	19.2
22-Dec-0		1.2	18.6
6-Jan-09		1.2	19.3
GMP12			
19-Nov-0	0 8	0	20.9
25-Nov-0		0	20.1
2-Dec-08		0	18.6
11-Dec-0		0	18.2
22-Dec-0		0	18.6
6-Jan-09		0.5	18.6
GMP13			
5-Nov-08	8 0	2.1	17.1
12-Nov-0		1.4	18.3
19-Nov-0	0.2	1.8	19
25-Nov-0		1.4	18.1
2-Dec-08		5.8	16.3
15-Dec-0		1.3	18.2
22-Dec-0		9.8	7.6
6-Jan-09		9.2	11
GMP14			
5-Nov-08	8 0	2.4	15.6
12-Nov-0	08 1.1	0.8	18.2
19-Nov-0		1.1	18.6
25-Nov-0		0.4	18.6
2-Dec-08		0.1	20.4

11-Dec-08 12-Dec-08 12-Dec-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
12-Dec-08 0 0 20.2 17-Dec-08 0 5.4 12.2 18-Dec-08 0 4.6 12.9 19-Dec-08 0 0 20.5 22-Dec-08 0 4.3 15.3 23-Dec-08 0 2.3 16.3 24-Dec-08 0 0.1 19.6 5-Jan-09 0 1.8 17.3 6-Jan-09 0 4.5 12.3 GMP15 5-Nov-08 0 0 20.4 12-Nov-08 0 0 20.4 12-Nov-08 0 0 19.6 19-Nov-08 0 0 20.8 25-Nov-08 0 0 20.8 25-Nov-08 0 0 20.6 11-Dec-08 0 0 22.6 12-Dec-08 0 0 22.6 12-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 20.6 22-Dec-08	11-Dec-08	0	0.8	20.4
18-Dec-08 0 4.6 12.9 19-Dec-08 0 0 20.5 22-Dec-08 0 4.3 15.3 23-Dec-08 0 0.1 19.6 24-Dec-08 0 0.1 19.6 5-Jan-09 0 1.8 17.3 6-Jan-09 0 4.5 12.3 GMP15 5-Nov-08 0 0 20.4 12-Nov-08 0 0 20.8 25-Nov-08 0 0 20.8 25-Nov-08 0 0 20.6 11-Dec-08 0 0 20.6 11-Dec-08 0 0 22.6 12-Dec-08 0 0 20.1 18-Dec-08 0 0 20.1 18-Dec-08 0 0 20.6 22-Dec-08 0 0 20.6 22-Dec-08 0 0 20.6 22-Dec-08 0 0 20.2 24-Dec-08 0 0 20.2	12-Dec-08	0		20.2
19-Dec-08 0 0 20.5 22-Dec-08 0 4.3 15.3 23-Dec-08 0 2.3 16.3 24-Dec-08 0 0.1 19.6 5-Jan-09 0 1.8 17.3 6-Jan-09 0 1.8 17.3 6-Jan-09 0 1.8 17.3 GMP15 5-Nov-08 0 0 20.4 12-Nov-08 0 0 19.6 19-Nov-08 0 0 20.8 25-Nov-08 0 0 20.8 25-Nov-08 0 0 20.6 11-Dec-08 0 0 20.6 11-Dec-08 0 0 22.6 12-Dec-08 0 0 20.1 18-Dec-08 0 0 20.1 18-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 0 20.2	17-Dec-08	0	5.4	12.2
22-Dec-08 0 4.3 15.3 23-Dec-08 0 2.3 16.3 24-Dec-08 0 0.1 19.6 5-Jan-09 0 1.8 17.3 6-Jan-09 0 1.8 17.3 6-Jan-09 0 4.5 12.3 GMP15 5-Nov-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18-Dec-08	0	4.6	12.9
22-Dec-08 0 4.3 15.3 23-Dec-08 0 2.3 16.3 24-Dec-08 0 0.1 19.6 5-Jan-09 0 1.8 17.3 6-Jan-09 0 4.5 12.3 GMP15 5-Nov-08 0 0 20.4 12-Nov-08 0 0 19.6 19-Nov-08 0 0 20.8 25-Nov-08 0 0 20.8 25-Nov-08 0 0 20.6 11-Dec-08 0 0 20.6 11-Dec-08 0 0 22.6 12-Dec-08 0 0 20.1 18-Dec-08 0 0 20.1 18-Dec-08 0 0 20.6 22-Dec-08 0 0 20.6 22-Dec-08 0 0 20.2 24-Dec-08 0 0 20.2 24-Dec-08 0 0 20.4 6-Jan-09 0 0 18.3 <td>19-Dec-08</td> <td>0</td> <td></td> <td>20.5</td>	19-Dec-08	0		20.5
23-Dec-08 24-Dec-08 0 01 19.6 5-Jan-09 0 1.8 17.3 6-Jan-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22-Dec-08	0	4.3	
24-Dec-08 0 0.1 19.6 5-Jan-09 0 1.8 17.3 6-Jan-09 0 4.5 12.3 GMP15 5-Nov-08 0 0 0 0 19.6 19-Nov-08 0 0 0 19.6 19-Nov-08 0 0 0 19.9 2-Dec-08 0 0 0 19.9 2-Dec-08 0 0 0 0 20.6 11-Dec-08 0 0 0 12-Dec-08 0 0 0 19.8 17-Dec-08 0 0 0 19.9 19-Dec-08 0 0 0 19.9 19-Dec-08 0 0 0 19.9 23-Dec-08 0 0 0 19.9 23-Dec-08 0 0 0 20.2 24-Dec-08 0 0 0 1.2 18.6 5-Jan-09 0 0 18.3 GMP19	23-Dec-08			16.3
5-Jan-09 0 1.8 17.3 6-Jan-09 0 4.5 12.3 GMP15 5-Nov-08 0 0 20.4 12-Nov-08 0 0 19.6 19-Nov-08 0 0 20.8 25-Nov-08 0 0 19.9 2-Dec-08 0 0 20.6 11-Dec-08 0 0 22.6 12-Dec-08 0 0 19.8 17-Dec-08 0 0 20.1 18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3	24-Dec-08	0		19.6
GMP15 0 4.5 12.3 5-Nov-08 0 0 20.4 12-Nov-08 0 0 19.6 19-Nov-08 0 0 20.8 25-Nov-08 0 0 19.9 2-Dec-08 0 0 22.6 11-Dec-08 0 0.1 19.8 17-Dec-08 0 0 20.1 18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3		0		
GMP15 5-Nov-08 0 0 0 19-6 19-Nov-08 0 0 0 19.6 19-Nov-08 0 0 0 19.9 2-Dec-08 0 0 11-Dec-08 0 0 0 22.6 12-Dec-08 0 0 0 19.8 17-Dec-08 0 0 0 19.9 19-Dec-08 0 0 19.9 23-Dec-08 0 0 12-Dec-08 0 0 12-Dec-08 0 0 13-Dec-08 0 0 14-Dec-08 0 0 15-Dec-08 0 0 19.9 19-Dec-08 0 0 19.9 23-Dec-08 0 0 19.9 23-Dec-08 0 0 10.1 18.6 5-Jan-09 0 0 18.3				
5-Nov-08 0 0 20.4 12-Nov-08 0 0 19.6 19-Nov-08 0 0 20.8 25-Nov-08 0 0 19.9 2-Dec-08 0 0 20.6 11-Dec-08 0 0 22.6 12-Dec-08 0 0.1 19.8 17-Dec-08 0 0 20.1 18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
5-Nov-08 0 0 20.4 12-Nov-08 0 0 19.6 19-Nov-08 0 0 20.8 25-Nov-08 0 0 19.9 2-Dec-08 0 0 20.6 11-Dec-08 0 0 22.6 12-Dec-08 0 0.1 19.8 17-Dec-08 0 0 20.1 18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3	GMP15			
12-Nov-08 0 0 19.6 19-Nov-08 0 0 20.8 25-Nov-08 0 0 19.9 2-Dec-08 0 0 20.6 11-Dec-08 0 0 22.6 12-Dec-08 0 0.1 19.8 17-Dec-08 0 0 20.1 18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3		0	0	20.4
19-Nov-08 0 0 20.8 25-Nov-08 0 0 19.9 2-Dec-08 0 0 20.6 11-Dec-08 0 0 22.6 12-Dec-08 0 0.1 19.8 17-Dec-08 0 0 20.1 18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
25-Nov-08 0 0 19.9 2-Dec-08 0 0 20.6 11-Dec-08 0 0 22.6 12-Dec-08 0 0.1 19.8 17-Dec-08 0 0 20.1 18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
2-Dec-08 0 0 20.6 11-Dec-08 0 0 22.6 12-Dec-08 0 0.1 19.8 17-Dec-08 0 0 20.1 18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
11-Dec-08 0 0 22.6 12-Dec-08 0 0.1 19.8 17-Dec-08 0 0 20.1 18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
12-Dec-08 0 0.1 19.8 17-Dec-08 0 0 20.1 18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
17-Dec-08 0 0 20.1 18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
18-Dec-08 0 0 19.9 19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
19-Dec-08 0 0 20.6 22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
22-Dec-08 0 0 19.9 23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
23-Dec-08 0 0 20.2 24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
24-Dec-08 0 1.2 18.6 5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
5-Jan-09 0 0 20.4 6-Jan-09 0 0 18.3				
6-Jan-09 0 0 18.3 GMP19				
GMP19				
	o dan da			10.0
	GMP19			
74-UCT-U8	24-Oct-08	0	0.2	20.9
27-Oct-08 0 8 14.2				
5-Nov-08 0 7.9 13.7				
12-Nov-08 0 7.8 12.9				

	1	1	1	
19-Nov-08	0	8.2	13.9	
25-Nov-08	0	8.1	13.2	
2-Dec-08	0	8.4	14	
15-Dec-08	0	1.4	19.2	
22-Dec-08	0	8.2	12.7	
6-Jan-09	0	8.8	12.3	
GMP20				
24-Oct-08	0	2	17	
27-Oct-08	0	3.3	16.5	
5-Nov-08	0	1.3	19.3	
12-Nov-08	0	1.3	18.1	
19-Nov-08	0	1.6	19.2	
25-Nov-08	0	1.6	18.5	
2-Dec-08	0	1.4	19.7	
15-Dec-08	0	1.6	18.4	
22-Dec-08	0	1.7	17.4	
6-Jan-09	0	1.7	18	
GMP21				
24-Oct-08	0	0.5	20.8	
27-Oct-08	0	1.5	19.7	
5-Nov-08	0	4.9	15.4	
12-Nov-08	0	5.3	14.9	
19-Nov-08	0	6	15.5	
25-Nov-08	0	6.2	15	
2-Dec-08	0	6.3	15.3	
15-Dec-08	0	5.2	19.6	
10 000 00	0	5.8	12.5	
22-Dec-08				
	0	7	9.2	
22-Dec-08		7	9.2	EPA monitoring bore installed to 1.5m directly adjacent to GMP8a

	12-Nov-08	0	0.9	18.3	
	19-Nov-08	0	1.6	19.3	
	25-Nov-08	0	1.2	18.2	
	2-Dec-08	0	0.9	20.2	
	15-Dec-08	N/A	N/A	N/A	Bore inundated with water. Unable to obtain reading.
	22-Dec-08	0	2.3	16.3	
	6-Jan-09	N/A	N/A	N/A	Bore inundated with water. Unable to obtain reading.
F	EPA BAYLISS				EPA monitoring bore installed to 1.5m on south side of Bayliss Rd (south of site.)
	5-Nov-08	0	0.5	19.2	
	12-Nov-08	0	0.6	18.6	
	19-Nov-08	0	0.3	20.2	
	25-Nov-08	0	0.4	19.1	
	2-Dec-08	0	1	20.1	
	15-Dec-08	N/A	N/A	N/A	Unable to obtain reading as bore was inundated with water
	22-Dec-08	0	0.2	19.4	
	6-Jan-09	0	0.7	18.5	

2.2 Landfill address: TPI sites Fraser Road and Heatherton Road, Clayton South

Figure: Clayton South probe monitoring location plan (probes used by TPI).

Baxter and Cleanaway landfills shown are owned by TPI.

Landfill address: Fraser Rd, Clayton South

Landfill licence: EM28818

Licence holder: Transpacific Industries Group Ltd (TPI)

Figure: Fraser Road probe monitoring location plan (probes used by TPI).

Baxter and Cleanaway landfills shown are owned by TPI.

Landfill address: corner Deals Road & Heatherton Road, Clayton South

Landfill licence: ES49849

Licence holder: Transpacific Industries Group Ltd (TPI)

Figure: Heatherton Road probe monitoring location plan (probes used by TPI).

Baxter and Cleanaway landfills shown are owned by TPI.

Table: Fraser Road and Heatherton Road methane monitoring data supplied by TPI

mgt Environmental Soilgas Monitoring - Deals Road Landfill

					GA2	is (In-Situ l 000 Landfil	l Gas Ana			m	gt Lab Analy	sis	
Gas Monitoring Probe	Date Sampled	Sample Depth (m)	Sample Time (Hours)	Field Methane %v/v	Field CO2 %v/v	Field O2 %v/v	Field CO ppm	Field H ₂ S ppm	Field N ₂ (Balance) %v/v	Gas Bag I.D	Gas Bag Lab No.	Lab Methane %v/v	GPS Location
\$G1	14.7.08	1.3	1130	<0.5	0.1	20.9	<1	<1	79.0	-	-	-	S. 37.57'30.4° E. 145.07'21.6°
SG1 (post purge)	14.7.08	1.3	1205	<0.5	0.1	20.8	<1	1	79.1	SG1	08-JL07197	<0.05	· .
SG2	14.7.08	1.3	1145	<0.5	4.2	17.8	<1	1	78.0	-	-	-	S. 37.57'29.5° E. 145.07'21.8°
SG2 (post purge)	14.7.08	1.3	1220	<0.5	4.1	17.9	<1	1	78.0	-	-	-	
SG3	14.7.08	1.3	1155	<0.5	10.2	12.8 .	<1	. <1	76.9	-	-	- '	S. 37.57'29.2° E. 145.07'22.1°
SG3 (post purge)	14.7.08	1.3	1225	<0.5	9.9	12.9	<1	<1	. 77.1	-	-	-	
SG4	14.7.08	1.3	1200	47.7	29.8	0.6	9	158	21.9	-			S. 37.57'28.6° E. 145.07'22.2°
SG4 (post purge)	14.7.08	1.3	1235	40.8	29.6	1.3	17	197	28.3	-	-	-	
SG5	14.7.08	1.3	1240	31.7	37.0	<1	2	9	31.3	-			S. 37.57'28.2° E. 145.07'22.2°
SG5 (post purge)	14.7.08	1.3	1315	31.2	37.1	<1	3	25	31.7		-	-	
SG6	14.7.08	1.3	1245	48.1	42.4	<1	41	>200	9.5	-		-	S. 37.57'27.9° E. 145.07'22.3°
SG6 (post purge)	14.7.08	1.3	1320	47.5	42.3	<1	64	>200	10.2	-	-	-	
SG7	14.7.08	1.3	1250	54.5	43.5	<1	164	>200	2.0	-	-	-	S. 37.57'27.7° E. 145.07'22.4°
SG7 (post purge)	14.7.08	1.3	1325	54.1	44.0	<1	203	>200	1.9				
SG8	14.7.08	1.3	1255	58.8	41.2	<1	6	14	0.0	-	-	-	S. 37.57'27.3° E. 145.07'22.4°
SG8 (post purge)	14.7.08	1.3	1330	58.5	41.5	<1	12	26	0.0	-	-	-	
SG9	14.7.08	1.3	1300	31,4	35.5	2.2	<1	6	30.9				S. 37.57'26.5° E. 145.07'22.5°
SG9 (post purge)	14.7.08	1.3	1335	30.7	35.3	2.5	3	7	31.5	SG9	08-JL07198	21	J. J. 101 E. 100 E. 1710 J. E. 100

Report No.230561 1 of 3

mgt Environmental Soilgas Monitoring - Deals Road Landfill

				mgt Fie		s (In-Situ L 000 Landfil			ortable	mç	jt Lab Analy	sis	
Gas Monitoring Probe	Date Sampled	Sample Depth (m)	Sample Time (Hours)	Field Methane %v/v	Field CO2 %v/v	Field O2 %v/v	Field CO ppm	Field H ₂ S ppm	Field N ₂ (Balance) %v/v		Gas Bag Lab No.	Lab Methane %v/v	GPS Location
					,								

Report No.230561 2 of 3

mgt Environmental Soilgas Monitoring - Deals Road Landfill

					GA2	s (In-Situ I 000 Landfil				mg	gt Lab Analy	/sis	
Gas Monitoring Probe	Date Sampled	Sample Depth (m)	Sample Time (Hours)	Field Methane %v/v	Field CO2 %v/v	Field O2 %v/v	Field CO ppm	Field H ₂ S ppm	Field N₂ (Balance) %v/v	Gas Bag I.D	Gas Bag Lab No.	Lab Methane %v/v	. GPS Location
SG10	14.7.08	1.3	1340	37.3	39.2	<1	5	6	23.5	-		-	S. 37.57'26.0° E. 145.07'22.7°
SG10 (post purge)	14.7.08	1.3	1405	37.4	39.4	<1	<1	4	23.2	-	-	-	
SG11	14.7.08	1.3	1410	56.9	43.1	<1	10	28	0.0	-			S. 37.57°25.5° E. 145.07°22.7°
SG11 (post purge)	14.7.08	1.3	1445	56.8	43.2	<1	14	31	0.0	-	-		
SG12	14.7.08	1.3	1415	58.3	41.7	<1	10	48	0.0	-	-	_	S. 37.57'24.7° E. 145.07'22.9°
SG12 (post purge)	14.7.08	1.3	1450	58.2	41.8	<1	10	53	0.0	-	-	-	
SG13	14.7.08	1.3	1420	58.0	30.4	<1	1	7	11.6	-	-	-	S. 37.57'24.1° E. 145.07'23.0°
SG13 (post purge)	14.7.08	1.3	1455	57.8	30.3	<1	4	21	11.9	-	*	-	
SG14	14.7.08	1.3	1425	61.1	38.9	<1	10	28	0.0	-	-	-	S. 37.57'23.5° E. 145.07'23.2°
SG14 (post purge)	14.7.08	1.3	1500	61.4	38.6	<1	10	30	0.0	-		-	
SG15	14.7.08	1.3	1505	58.4	39.1	<1	7	29	2.5		-	-	S. 37.57'22.8° E. 145.07'23.2°
SG15 (post purge)	14.7.08	1.3	1540	58.9	38.9	<1	6	32	2.2	-	-	-	
SG16	14.7.08	1.3	1535	29.4	24.5	<1	12	8	46.1				S. 37.57'20.7° E. 145.07'23.6°
SG16 (post purge)	-	-	-	-	-		-	-	-	-	-	-	
SG17	14.7.08	1.3	1540	0.6	15.2	4.0	<1	2	80.2	_			S. 37.57'18.8° E. 145.07'24.0°
SG17 (post purge)	-	-	-	-	-	-	-	-	-			-	
					. !								

Report No.230561 3 of 3

EPA VICTORIA

mgt Environmental Soilgas Monitoring - Transpacific Clayton Landfills

			mgt Field	l Analysis (In-Situ Land Landfill Ga	fill Gas mete s Analyser)	er - Portable	GA2000	mg	gt Lab Analy	sis
Ambient Gas Monitoring Location	Date Sampled	Sample Time (Hours)	Field Methane %v/v	Field CO2 %v/v	Field O2 %v/v	Field CO ppm	Field H ₂ S ppm	Field N₂ (Balance) %v/v	Gas Bag I.D	Gas Bag Lab No.	Lab Methane %v/v
House - South West boundary	29.10.08	1404	<0.1	<0.0	20.7	79.3	<1	<1	-	-	
(South West comer of Deals Rd Landfill)											
Workshop	29.10.08	1555	<0.1	<0.0	20.4	79.6	<1	<1	-	-	-
(Western boundary of Fraser Rd Landfill)									. 2:1/4/4		
Nursery - Building 1	30.10.08	0926	<0.1	<0.0	20.5	79.5	<1	<1	-	-	-
(In Spring Valley Golf Club property on South East boundary of Deals Rd Landfill)											
Nursery - Building 2	30.10.08	0930	<0.1	<0.0	20.6	79.4	<1	<1	-	_	-
(In Spring Valley Golf Club property on South East boundary of Deals Rd Landfill)											
Nursery - Building 3	30.10.08	0934	<0.1	<0.0	20.5	79.5	<1	<1	-		-
(In Spring Valley Golf Club property on South East boundary of Deals Rd Landfill)	-						-				·

In-Situ Field measurements performed by GA2000 Landfill Gas Analyser.

Report No.236282 1 of 1

mgt Environmental Soilgas Monitoring - Transpacific Clayton Landfills

					mgt Fie	eld Analysi		Landfill C ìll Gas Ar	Gas meter - nalyser)	Portable	GA2000	i	mgt Lab Anal	ysis	
Gas Monitoring Probe	Barometric Pressure	Date Sampled	Sample Depth (m)	Sample Time (Hours)	Average Methane %v/v	Peak Methane %v/v	Field CO2 %v/v	Field O2 %v/v	Field N ₂ (Balance) %v/v	Field H ₂ S ppm	Field CO ppm	Gas Bag I.D	Gas Bag Lab No.	Lab Methane %v/v	Comments
SG1	1013	29.10.08	1.3	1054	<0.1	<0.1	0.3	20.8	78.8	<1	2	-	-	-	
SG3	1013	29.10.08	1.3	1105	<0.1	<0.1	8.5	13.3	78.2	<1	2	-	-	-	
SG6	1013	29.10.08	1.3	1114	<0.1	<0.1	13.4	7.3	79.2	<1	3	-	-		
SG8	1013	29.10.08	1.3	1121	45.5	45.6	40.6	. 0.0	13.5	<1	10	-		-	
SG10	1013	29.10.08	1.3	1127	0.5	0.5	20.9	1.4	77.1	<1	4	-	-	-	
SG12	1013	29.10.08	1.3	1134	46.2	46.8	40.2	0.0	13.7	41	5		-	-	
SG14	1013	29.10.08	1.3	1144	54.3	54.4	35.9	0	9.5	22	6	-	-	-	
SG16	1013	29.10.08	1.3	1215	27.3	36.5	24	1.5	47.2	4	5		<u>.</u>		
SG17	. 1013	29.10.08	1.3	1218	4.7	4.7	21.7	0.1	73.4	2	7		-		
SG18	1013	29.10.08	1.3	1250	0	0	3.2	18	78.6	4	48	SG18	08-Oc11247	<0.002	
SG19	1013	29.10.08	1.3	1320	0	0	. 23	2.2	74.7	<1	9	-		-	
SG20	1013	29.10.08	1.3	1325	57.6	57.7	42.3	0.2	0.1	3	25		-	-	
SG21	1013	29.10.08	1.3	1341	0.1	0.1	0	20.8	79	<1	2	-	-	=	,
SG22	1013	29.10.08	1.3	1350	-	-	-	-	-		-	-	· -	-	Unable to purge
SG23	1013	29.10.08	1.3	1400	56.7	56.9	42.5	0.2	0.3	32	34	-	-	-	
SG23	1013	29.10.08	1.3	1400	56.7	56.9	42.5	0.2	0.3	32	34	-	-	-	

Report No.236282 1 of 6

mgt Environmental Soilgas Monitoring - Transpacific Clayton Landfills

					mgt Fie	eld Analysi		Landfill C	3as meter - nalyser)	Portable	GA2000		mgt Lab Anal	ysis	
Gas Monitoring Probe	Barometric Pressure	Date Sampled	Sample Depth (m)	Sample Time (Hours)	Average Methane %v/v	Peak Methane %v/v	Field CO2 %v/v	Field O2 %v/v	Field N ₂ (Balance) %v/v	Field H ₂ S ppm	Field CO ppm	Gas Bag I.D	Gas Bag Lab No.	Lab Methane %v/v	Comments
SG24	1013	29.10.08	1.3	1404	-	-	-	-	-	- `	. =	-		-	Unable to purge
SG25	1013	29.10.08	1.3	1409			-		-	-	-	-	<u> </u>	-	Unable to purge
SG26	1013	29.10.08	1.3	1412	50.8	51.7	46.4	0.2	2.2	2	64	-		-	
SG27	1013	29.10.08	1.3	1416	57.4	57.4	42.7	0.1	0	2	32	-	-	-	
SG28	1013	29.10.08	1.3	1423	0.1	0.1	0.7	20.3	78.8	<1	4	-	-	-	
SG29	1013	29.10.08	1.3	1427	6.9	7	24.2	0.1	68.6	<1	72		-	-	
SG30	1013	29.10.08	1,3	1432	20.4	20.5	23.1	0.1	56.1	<1	72	-	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SG31	1013	29.10.08	0.8	1440	65.5	65.6	30.5	0.1	3.8	8	46				
SG32	1013	29.10.08	0.7	1450	28.2	28.6	18.3	0.1	3.8	2	22		-	-	
SG33	1013	29.10.08	1.3	1505	0.8	0.8	13.3	5.6	80.1	<1	12	-		-	
SG34	1013	29.10.08	1.3	1509	0.1	0.1	3.9	16.6	79.3	<1	9	-	-		
SG35	1013	29.10.08	1.3	1515	4.2	4.5	18.4	4.7	72.6	82	19	-	-	-	
SG36	1013	29.10.08	. 1.3	1530	47.9	48.2	31.8	0.2	20.2	10	93	<u> </u>		-	
SG37	1013	29.10,08	1.0	1552	20.7	20.8	22.9	0.2	56.1	23	22		-	-	
SG38	1013	29.10.08	1.3	1627	3.5	3.7	20.8	0.5	75.1	6	18		-		
SG39	1008	30.10.08	1.3	926	<0.1	<0.1	4.6	16.8	78.5	<1	2	SG39	08-Oc11248	<0.002	

In-Situ Field measurements performed by GA2000 Landfill Gas Analyser.

Report No.236282 2 of 6

mgt Environmental Soilgas Monitoring - Transpacific Clayton Landfills

					mgt Fie	eld Analysi		Landfill (Bas meter • alyser)	Portable	GA2000	r	ngt Lab Ana	lysis	
Gas Monitoring Probe	Barometric Pressure	Date Sampled	Sample Depth (m)	Sample Time (Hours)	Average Methane %v/v	Peak Methane %v/v	Field CO2 %v/v	Field O2 %v/v	Field N ₂ (Balance) %v/v	Field H ₂ S ppm	Field CO ppm	Gas Bag I.D	Gas Bag Lab No.	Lab Methane %v/v	Comments
	-											- 1		2011	

In-Situ Field measurements performed by GA2000 Landfill Gas Analyser.

mgt Environmental Soilgas Monitoring - Transpacific Clayton Landfills

					mgt Fie	eld Analysi		Landfill (ill Gas An	Gas meter - nalyser)	Portable	GA2000		ngt Lab Anal	ysis	
Gas Monitoring Probe	Barometric Pressure	Date Sampled	Sample Depth (m)	Sample Time (Hours)	Average Methane %v/v	Peak Methane %v/v	Field CO2 %v/v	Field O2 %v/v	Field N ₂ (Balance) %v/v	Field H₂S ppm	Field CO ppm	Gas Bag I.D	Gas Bag Lab No.	Lab Methane %v/v	Comments
SG40	1008	30.10.08	1.3	937	9.5	9.5	27	0.2	73.2	<1	2	-		-	
SG41	1008	30.10.08	1.3	950	<0.1	<0.1	2.4	18.7	78.8	<1	3	-	-		
SG42	1008	30.10.08	1.3	958	<0.1	<0.1	4.2	17	. 78.7	<1	2		-		
SG43	1008	30.10.08	1.3	1020	<0.1	<0.1	4.4	17.9	77.6	<u><</u> 1	14	-	-	-	
SG44	1008	30.10.08	1.3	1035	<0.1	<0.1	12.1	11.1	76.6	<1	5	SG44	08-Oc11249	<0.002	
SG45	1008	30.10.08	1.3	1050	<0.1	<0.1	14.6	3.3	82	<1	13	-	-	-	
SG46	1008	30.10.08	1.3	1058	<0.1	<0.1	4.9	15.1	79.8	<1	10	-		-	
SG47	1008	30.10.08	1.3	1120	57.1	57.5	31.6	0	11	8	21	SG47	08-Oc11250	45	
SG48	1002	30.10.08	1.3	1230	<0.1	<0.1	4.9	17.3	77.8	<1	17			-	
SG49	1002	30.10.08	1.3	1236	<0.1	<0.1	6.9	15.5	77.4	<1	2	-	· -		
SG50	1002	30.10.08	1.3	1242	. <0.1	<0.1	10.1	12.7	77.3	<1	49	-	-		
SG51	1002	30.10.08	1.3	1245	<0.1	<0.1	12.9	6.2	80.8	<1	4	-	-	-	
SG52	1002	30.10.08	1.3	1250	<0.1	<0.1	3	15.7	81.2	<1	2	-		-	
SG53	1002	30.10.08	1.3	1255	0.1	0.1	19.4	1.3	79.1	<1	11	-		-	
SG54	1002	30.10.08	-	-	-	-	-	-	-	-	-	-	-	-	Unable to reach depth
SG55	1002	30.10.08	1.2	1303	<0.1	<0.1	4.5	16.9	78.5	2	6	-	-	- 1	

In-Situ Field measurements performed by GA2000 Landfill Gas Analyser.

Report No.236282

mgt Environmental Soilgas Monitoring - Transpacific Clayton Landfills

					mgt Fid	eld Analysi		Landfill (ill Gas Ar	ias meter - alyser)	Portable	GA2000	ı	ngt Lab Ana	lysis	
Gas Monitoring Probe	Barometric Pressure	Date Sampled	Sample Depth (m)	Sample Time (Hours)	Average Methane %v/v	Peak Methane %v/v	Field CO2 %v/v	Field O2 %v/v	Field N ₂ (Balance) %v/v	Field H ₂ S ppm	Field CO ppm	Gas Bag I.D	Gas Bag Lab No.	Lab Methane %v/v	Comments
SG58	1002	30.10.08	1.2	1309	<0.1	<0.1	2.6	18	79.3	2	16	-	-	-	

Report No.236282

5 of 6

In-Situ Field measurements performed by GA2000 Landfill Gas Analyser.

mgt Environmental Soilgas Monitoring - Transpacific Clayton Landfills

					mgt Fie	eld Analysi		Landfill C ill Gas An	as meter - alyser)	Portable	GA2000		ngt Lab Anal	ysis	
Gas Monitoring Probe	Barometric Pressure	Date Sampled	Sample Depth (m)	Sample Time (Hours)	Average Methane %v/v	Peak Methane %v/v	Field CO2 %v/v	Field O2 %v/v	Field N ₂ (Balance) %v/v	Field H ₂ S ppm	Field CO ppm	Gas Bag I.D	Gas Bag Lab No.	Lab Methane %v/v	Comments
SG57	1002	30.10.08	1,2	1320	<0.1	<0.1	3.8	17.8	78.4	<1	8	Ŀ	-	-	
SG58	1002	30.10.08	1.3	1325	<0.1	<0.1	2.3	18.8	78.9	<1	2	Ŀ	-	-	
SG59	1002	30.10.08	1.3	1342	<0.1	<0.1	1.8	19.6	78.6	<1	2	-	-		
SG60	1002	30.10.08	1.3	1352	<0.1	<0.1	3.2	18.3	78.4	<1	1	Ŀ	-	-	
SG61	1002	30.10.08	1.3	1357	<0.1	<0.1	2	19.6	78.4	<1	2	Ŀ	-	-	
SG62	1002	30.10.08	1.3	1402	<0.1	<0.1	2.7	19	78.2	<1	4	-	-	-	
SG63	1002	30.10.08	1.3	1406	<0.1	<0.1	0.8	20.4	78.6	<1	2	-	-	-	
SG64	1002	30.10.08	1.3	1415	65.5	66.5	31	0.2	2.8	10	67	SG64	08-Oc11251	67	
SG65	1002	30.10.08	1.3	1424	60.9	61.5	34.2	0.1	4.9	10	17	SG65	08-Oc11252	63	
SG66	1002	30.10.08	1.3	1438	8.3	10.9	19.4	3.7	58.5	4	9		-	-	
SG67	1002	30.10.08	1.3	1450	<0.1	<0.1	- 22	18.9	78.8	<1	23				
SG68	1002	30.10.08	1.3	1456	<0.1	<0.1	3.9	14.1	81.8	<1	75	<u> </u>	-		

In-Situ Field measurements performed by GA2000 Landfill Gas Analyser.

Report No.236282 6 of 6

mgt Environmental Soilgas Monitoring - Transpacific Clayton South area

							Landi	ill Gas Ar				ı	ngt Lab Analys		
Gas Monitoring Probe	Barometric Pressure	Date Sampled	Sample Depth (m)	Sample Time (Hours)	Average Methane %v/v	Peak Methane %v/v	Field CO2 %v/v	Field O2 %v/v	Field N ₂ (Balance) .%v/v	Field H ₂ S ppm	Field CO ppm	Gas Bag I.D	Gas Bag Lab No.	Lab Methane %v/v	Comments
SVB69	1002	20.11.08	1.3	0926	56.0	56.1	39.2	0.2	4.6	22	17	-	-	7 -	
SVB70	1002	20.11.08	1.3	0917	67.5	67.6	32.4	0.2	0.0	31	17	SVB70	08-Ne08250	49	
SVB71	1002	20.11.08	1.3	0910	62.3	62.3	35.5	0.7	1.4	11	14		-	-	
SVB72	1008	19.11.08	1.3	1447	11.1	11.2	21.6	3.1	64.1	8	5		-	-	
SVB73	1008	19.11.08	1.3	1432	29.6	29.9	20.6	9.7	39.8	144	6			-	
SVB74	1008	19.11.08	1.3	1421	56.3	56.3	38.7	0.4	4.5	40	13			-	
SVB75	1008	19.11.08	1.3	1413	57.9	58	38.4	0.4	3.2	144	12	-		-	
SVB76	1008	19.11.08	1.3	1355	57.9	58.1	38.9	0.4	3.0	59	13	-			
SVB77	1008	19.11.08	1.3	1337	46.6	47.7	32.2	3.9	17.3	1	12	-	-	-	1
SVB78	1008	19.11.08	1.3	1312	0.0	0.0	4.0	14.5	81.5	<1	. 5				
SVB79	1008	19.11.08	1.2	1258	0.0	8.0	4.9	16.4	78.6	· <1	3		-	-	
SVB80	1008	19.11.08	1.3	1235	22.9	42.8	22.1	0.1	55.6	>200	11		-	-	4
SVB81	1002	20.11,08	1.3	0953	1.7	1.7	4.1	18.1	76.0	<1	<1	_	-	-	
SVB82	1002	20.11.08	1.3	1018	<0.1	<0.1	4.7	17.0	78.3	<1	2	SVB82	08-No08247	<0.002	
SVB83	1002	20.11.08	1.3	1025	<0.1	<0.1	5.7	16.2	78.0	<1	4	SVB83	08-No08248	<0.002	
SVB163	1002	21.11.08	1.3	1402	5.1	5.1	23.9	0.4	70.6	7	13	-	-	-	
SVB164	1002	21.11.08	1.3	1410	58.2	58.6	38.5	0.4	3.0	27	27	-	-	-	

In-Situ Field measurements performed by GA2000 Landfill Gas Analyser.

Report No.237354 1 of 1

Survey Co-ordinates of Soil Gas Monitoring Locations in the Clayton South Area Since July 2008

Gas Soil			RL m	Date Surveyed by
Monitoring	Easting	Northing		Charter Keck
Location		_	ground	Cramer
\$G-01	334966.1	5796951.1	30.9	3/11/2008
SG-02				
SG-03	334970.3	5796976.7	31.6	3/11/2008
SG-04				
SG-05				
SG-06	334977.6	5797025.9	32.5	3/11/2008
SG-07	334978.9	5797036.2	32.7	3/11/2008
SG-08	334980.2	5797045.8	32.9	3/11/2008
SG-09	334982.9	5797066.6	33.5	3/11/2008
SG-10	334985.6	5797087.3	34.2	3/11/2008
SG-11				3/11/2008
SG-12	334992.3	5797124.8	34.8	3/11/2008
SG-13				3/11/2008
SG-14	334999.0	5797181.8	35.1	3/11/2008
SG-15				3/11/2008
SG-16	335005.7	5797248.7	36.4	3/11/2008
SG-17	335015.1	5797309.1	36.3	3/11/2008
SG-18	334966.7	5796928.7	30.2	3/11/2008
SG-19	334941.7	5796928.7	29.6	3/11/2008
SG-20	334902.2	5796933.2	45.2	3/11/2008
SG-21	334862.1	5796938.9	44.7	3/11/2008
SG-22	334826.9	5796944.1	28.3	3/11/2008
SG-23	334787.0	5796949.9	28.1	3/11/2008
SG-24	334746.5	5796955.7	28.2	3/11/2008
SG-25	334707.4	5796961.4	28.3	3/11/2008
SG-26	334667.8	5796966.2	28.1	3/11/2008
SG-27	334628.5	5796973.0	28.6	3/11/2008
SG-28	334583.9	5796979.2	29.4	3/11/2008
SG-29	334601.9	5796983.0	29.3	3/11/2008
SG-30	334595.0	5796993.7	29.3	3/11/2008
SG-31	334588.4	5797008.3	29.4	3/11/2008
SG-32	334577.7	5797026.7	30.1	3/11/2008
SG-33	334575.6	5797044.9	30.3	3/11/2008
SG-34	334582.2	5797097.3	30.4	3/11/2008
SG-35	334604.1	5797260.9	34.7	3/11/2008
SG-36	334787.0	5798226.3	41.3	3/11/2008
SG-37	334790.5	5798186.5	41.2	3/11/2008
SG-38	334782.0	5798525.3	43.8	3/11/2008
SG-39	334972.3	5796950.5	31.2	3/11/2008
SG-40	334984.7	5797044.9	32.8	3/11/2008
SG-41	335027.7	5797407.8	35.5	3/11/2008
SG-42	335050.4	5797546.1	38.0	3/11/2008
SG-43	334925.6	5797455.4	37.6	3/11/2008
SG-44	334930.1	5797489.8	37.6	3/11/2008
SG-45	334925.1	5797524.3	37.6	3/11/2008
SG-46	334835.8	5797539.4	37.5	3/11/2008
SG-47	334804.8	5797766.1	40.3	3/11/2008
SG-48	334440.2	5797924.2	45.4	3/11/2008
SG-49	334443.1	5797944.1	45.9	3/11/2008
SG-50	334446.3	5797962.9	46.2	3/11/2008
SG-51	334448.9	5797982.9	46.4	3/11/2008
SG-52	334453.3	5798008.7	46.8	3/11/2008
SG-53	334455.5	5798023.1	47.1	3/11/2008

TPI Data Summary Report 9.12.08.xls Tab: Survey Coord Gas Mon Locations

Survey Co-ordinates of Soil Gas Monitoring Locations in the Clayton South Area Since July 2008

Gas Soil Monitoring Location	Easting	Northing	RL m ground	Date Surveyed by Charter Keck Cramer
SG-54	334426.0	5798027.5	46.5	3/11/2008
SG-55	334386.0	5798033.9	46.6	3/11/2008
SG-56	334353.2	5798039.4	46.7	3/11/2008
SG-57	334320.4	5798045.0	47.0	3/11/2008
SG-58	334298.6	5798064.1	47.0	3/11/2008
SG-59	334304.4	5798106.6	46.3	3/11/2008
SG-60	334310.0	5798147.3	44.9	3/11/2008
SG-61	334315.0	5798187.1	43.6	3/11/2008
SG-62	334321.2	5798231.9	42.2	3/11/2008
SG-63	334326.0	5798267.4	42.0	3/11/2008
SG-64	334671.8	5797828.6	40.7	3/11/2008
SG-65	334678.5	5797877.7	41.0	3/11/2008
SG-66	334720.0	5798180.6	41.5	3/11/2008
SG-67	334989.6	5798563.3	45.0	3/11/2008
SG-68	335151.3	5798540.9	44.2	3/11/2008
SVB-69	334721.7	5798119.8	41.3	28/11/2008
SVB-70	334697.4	5797944.2	41.0	28/11/2008
SVB-71	334687.9	5797876	41.0	28/11/2008
SVB-72	334673.5	5797756.2	40.1	28/11/2008
SVB-73	334661.4	5797753.5	40.2	28/11/2008
SVB-74	334657.6	5797655.4	39.8	28/11/2008
SVB-75	334647.8	5797655.1	40.0	28/11/2008
SVB-76	334644.9	5797563.6	38.8	28/11/2008
SVB-77	334635.3	5797565	38.7	28/11/2008
SVB-78	334631.8	5797464.8	36.6	28/11/2008
SVB-79	334625.8	5797465.3	37.2	28/11/2008
SVB-80	334611.4	5797312	35.8	28/11/2008
SVB-81	335004.2	5797050.3	34.3	28/11/2008
SG-82	334430.5	5798275.8	42.3	28/11/2008
SVB-83	334616.2	5798250.9	41.7	28/11/2008
SVB-163	334373.7	5797837	41.0	28/11/2008
SVB-164	334557.5	5797813.6	42.3	28/11/2008

TPI Data Summary Report 9.12.08.xls Tab: Survey Coord Gas Mon Locations

2.3 Landfill address: 654-718 Clayton Road, Clayton South

Landfill licence: ES20872

Licence holder: Clayton Road Landfill Joint Venture

Table: Methane monitoring data supplied by Clayton Road Joint Venture (Bores were constructed by EPA and bore locations are shown in Appendix 3: GHD report)

Date	Bore ID	CH ₄	CO ₂	Ο.
Date	CL12	O1 14	CO ₂	O ₂
	CL12 CL11			
26 December 2008	CLTT CLDH26			
ZO December 2008	CLDH26 CL10			
		Not done done to absistance		
	CL09	Not done due to christmas	20.0	0
	CL12	61.3	38.6	0
29 December 2008	CL11 CLDH26	0	0.9	20
29 December 2006		0	1.6	19
	CL10	65	33	0
	CL09	0	2.5	17
	CL12	60	40	0
04 D 0000	CL11	17	30	0
31 December 2008	CLDH26	0	7.7	13
	CL10	61	35	0
	CL09	0	2.7	17.3
	CL12	60	39	0
0.10000	CL11	16	30	0
2 January 2009	CLDH26	0	6.4	16.7
	CL10	61	35	0
	CL09	0	2.5	18
	CL12	60.3	39	0
5 1 0000	CL11	15	29	0
5 January 2009	CLDH26	0	5.3	15.8
	CL10	61	35	0.1
	CL09	0	2	18.3
	CL12	59.7	38	0
	CL11	16	29	0
7 January 2009	CLDH26	0	4.8	15.8
	CL10	61	34	0.1
	CL09	0	2	18
	CL12	60.1	39	0
	CL11	15	29	0
9 January 2009	CLDH26	0	5.3	15.8
	CL10	61	35	0.1
	CL09	0	2	18.3
	CL12	60	40	0
	CL11	13	30	0
12 January 2009	CLDH26	0	4.5	16.5
	CL10	60	36	0
	CL09	0	1.7	18
14 January 2009				
	<u></u>			
16 January 2009				

Bore location plan: Clayton area map (Supplied GHD)

2.4 Landfill address: Springvalley Park, Clarke Road, Springvale South

Landfill licence: ES553

Licence holder: City of Greater Dandenong

Figure: Springvale Park bore monitoring location plan (bores constructed by City of Greater Dandenong).

Table: Springvale Park methane monitoring data supplied by City of Greater Dandenong

Location	Date	Reading*	Methane (% V/V)	Methane LEL (%)	Oxygen (%V/V)	Carbon Dioxide (%V/V)
GM01	01-Oct-08	Α	27.3	>100	12.2	19.9
GM01	01-Oct-08	В	0.6	10	19.7	0.3
GM08	01-Oct-08	Α	0	0	15.7	11.6
GM08	01-Oct-08	В	0.1	2	19.7	0.3
GM21	01-Oct-08	Α	0	0	16.7	5.9
GM21	01-Oct-08	В	0.1	2	19.8	0
GM22	01-Oct-08	Α	6.3	>100	13.1	10.8
GM22	01-Oct-08	В	1.5	30	17.8	2.9
GM01	02-Oct-08	Α	10.9	>100	13	8.9
GM01	02-Oct-08	В	0.2	3	19.5	0.1
GM02	02-Oct-08	Α	0	0	19	2
GM02	02-Oct-08	В	0	0	20.7	0
GM03	02-Oct-08	Α	0	0	19.2	0.7
GM03	02-Oct-08	В	0	0	20.3	0
GM04	02-Oct-08	Α	0	0	19.6	0.2
GM04	02-Oct-08	В	0.1	0	20.5	0
GM05	02-Oct-08	в	0	0	19.9	0.2
GM06B	02-Oct-08	Α	0	0	18.3	1.3
GM06B	02-Oct-08	В	0	0	18.8	0.9
GM07	02-Oct-08	Α	0	0	20	0.1
GM07	02-Oct-08	В	0	0	19.6	0
GM08	02-Oct-08	Α	0	0	17.9	4.6
GM08	02-Oct-08	В	0	0	20.9	0
GM09	02-Oct-08	Α	0	0	11.4	8.3
GM09	02-Oct-08	В	0	0	17	2.3
GM20	02-Oct-08	Α	0	0	18.6	1
GM20	02-Oct-08	В	0	0	19.5	0
GM21	02-Oct-08	Α	0.5	10	17.6	3.3
GM21	02-Oct-08	В	0.2	4	20.7	0
GM22	02-Oct-08	Α	5.6	>100	12.7	9.6
GM22	02-Oct-08	В	2.4	46	18.9	2.3

Location	Date	Reading*	Methane (% V/V)	Methane LEL (%)	Oxygen (%V/V)	Carbon Dioxide (%V/V)
GM01	30-Oct-08	Α	12.6	>100	15.4	6.2
GM01	30-Oct-08	В	0	0	19.7	0
GM02	30-Oct-08	Α	0	0	18.6	0.1
GM02	30-Oct-08	В	0	0	19.8	0
GM03	30-Oct-08	Α	0	0	18.5	2.4
GM03	30-Oct-08	В	0	0	19.8	0
GM04	30-Oct-08	Α	0	0	19.1	0.6
GM04	30-Oct-08	В	0	0	19.8	0
GM05	30-Oct-08	В	0	0	19.7	0
GM06B	30-Oct-08	Α	0	0	18.6	1.6
GM06B	30-Oct-08	В	0	0	19.6	0.3
GM07	30-Oct-08	Α	0	0	19.7	0.1
GM07	30-Oct-08	В	0	0	19.6	0.2
GM08	30-Oct-08	Α	0	0	15.7	7.2
GM08	30-Oct-08	В	0	0	19.7	0.2
GM20	30-Oct-08	Α	0	0	19	1
GM20	30-Oct-08	В	0	0	18.9	1
GM21	30-Oct-08	Α	0	0	18.8	1.3
GM21	30-Oct-08	В	0	0	19.7	0
GM22	30-Oct-08	Α	2.3	46	14.1	7.1
GM22	30-Oct-08	В	0	0	19.7	0
EPA1	12-Dec-08	Α	0.1	2	20.3	0.6
EPA1	12-Dec-08	В	0.1	2	21	0
EPA2	12-Dec-08	Α	0.2	4	20.4	0.6
EPA2	12-Dec-08	В	0.1	2	20.7	0.5
EPA3	12-Dec-08	Α	0.2	4	20.6	0.3
EPA3	12-Dec-08	В	0.1	2	20.7	0.5
EPA4	12-Dec-08	Α	0.1	1	18.2	2.4
EPA4	12-Dec-08	В	0.1	1	21	0
EPA5	12-Dec-08	Α	0.1	1	19.8	4
EPA5	12-Dec-08	В	0.1	1	20.2	1.2
EPA6	12-Dec-08	Α	0.1	2	20.1	0.9
EPA6	12-Dec-08	В	0.1	2	21	0
EPA7	12-Dec-08	Α	0.1	2	20.5	0.3
EPA7	12-Dec-08	В	0.1	2	20.7	0.3

Location	Date	Reading*	Methane (% V/V)	Methane LEL (%)	Oxygen (%V/V)	Carbon Dioxide (%V/V)
GM01	12-Dec-08	Α	13.1	>100	17.4	4.8
GM01	12-Dec-08	В	0.2	3	20.9	0
GM02	12-Dec-08	Α	0.1	2	20.6	0
GM02	12-Dec-08	В	0.1	2	21	0.1
GM03	12-Dec-08	Α	0.1	2	20.5	0.2
GM03	12-Dec-08	В	0.1	2	21	0
GM04	12-Dec-08	Α	0.2	4	20.2	0.1
GM04	12-Dec-08	В	0.1	2	21.1	0
GM06B	12-Dec-08	Α	0.1	2	20.5	0.3
GM06B	12-Dec-08	В	0.1	2	21	0.1
GM07	12-Dec-08	Α	0.1	1	20.6	0.4
GM07	12-Dec-08	В	0.1	1	20.2	1.6
GM08	12-Dec-08	Α	0.1	2	6.3	29.2
GM08	12-Dec-08	В	0.1	2	20.1	1.4
GM09	12-Dec-08	Α	0.2	1	21	0
GM09	12-Dec-08	В	0.1	1	21.1	1.4
GM20	12-Dec-08	Α	0.1	2	19.5	1.3
GM20	12-Dec-08	В	0.1	1	20.1	1.2
GM21	12-Dec-08	Α	0	0	18.5	2.9
GM21	12-Dec-08	В	0.1	1	21	0
GM22	12-Dec-08	Α	2.4	45	14.3	7.8
GM22	12-Dec-08	В	0.1	2	21	0
GM23	12-Dec-08	Α	0.1	2	19.4	1.5
GM23	12-Dec-08	В	0.1	2	20.9	0.1
GM24	12-Dec-08	Α	0	0	19.4	1.7
GM24	12-Dec-08	В	0.1	2	20.8	0.5
GM25	12-Dec-08	Α	0	0	20	0.7
GM25	12-Dec-08	В	0.1	2	20.9	0.1
GM26	12-Dec-08	Α	0.1	1	20.5	0.2
GM26	12-Dec-08	В	0.1	2	21.1	0
GM27	12-Dec-08	Α	0.2	2	20.2	0.7
GM27	12-Dec-08	В	0.1	2	21.1	0
GM28	12-Dec-08	Α	0.1	2	20.2	0.9
GM28	12-Dec-08	В	0.1	2	21.1	0
GM29	12-Dec-08	Α	0.2	2	20.6	0.4
GM29	12-Dec-08	В	0.1	2	20.6	0.9
GM30	12-Dec-08	Α	0.1	2	19.7	1.7
GM30	12-Dec-08	В	0	0	19.4	3.4

Location	Date	Reading*	Methane (% V/V)	Methane LEL (%)	Oxygen (%V/V)	Carbon Dioxide (%V/V)
EPA1	19-Dec-08	Α	0	0	20.5	1.5
EPA1	19-Dec-08	В	0	0	21.7	0
EPA2	19-Dec-08	Α	0	0	20.8	1.1
EPA2	19-Dec-08	В	0	0	21.5	0.3
EPA3	19-Dec-08	Α	0	0	21	0.8
EPA3	19-Dec-08	В	0	0	21.6	0.1
EPA4	19-Dec-08	Α	0	0	18.4	3
EPA4	19-Dec-08	В	0	0	21.1	0.5
EPA5	19-Dec-08	Α	0	0	20.3	1.8
EPA5	19-Dec-08	В	0	0	21.7	0
EPA6	19-Dec-08	Α	0	0	19.6	2.4
EPA6	19-Dec-08	В	0	0	21.5	0.2
EPA7	19-Dec-08	Α	0	0	20.4	0.6
EPA7	19-Dec-08	В	0	0	21.7	0.2
GM01	19-Dec-08	Α	24.5	>100	12.8	17.1
GM01	19-Dec-08	В	0.2	4	21.9	0
GM02	19-Dec-08	Α	0	0	21.2	0
GM02	19-Dec-08	В	0	0	21.7	0
GM03	19-Dec-08	Α	0	0	20.6	0.4
GM03	19-Dec-08	В	0	0	21.3	0.1
GM04	19-Dec-08	Α	0	0	16.4	9.9
GM04	19-Dec-08	В	0	0	21.7	0.1
GM06B	19-Dec-08	Α	0	0	20.2	2.2
GM06B	19-Dec-08	В	0	0	21.5	0.3
GM07	19-Dec-08	Α	0	0	20.7	1.3
GM07	19-Dec-08	В	0	0	21.3	0.4
GM08	19-Dec-08	Α	0	0	11.6	23.3
GM08	19-Dec-08	В	0.1	2	20.8	0.3
GM09	19-Dec-08	Α	0	0	20.7	17.3
GM09	19-Dec-08	В	0	0	20.6	0.5
GM20	19-Dec-08	Α	0	0	19.5	2.3
GM20	19-Dec-08	В	0	0	18.7	3.4
GM21	19-Dec-08	Α	0	0	20.4	1.8
GM21	19-Dec-08	В	0	0	21.6	0

10			

Location	Date	Reading*	Methane (% V/V)	Methane LEL (%)	Oxygen (%V/V)	Carbon Dioxide (%V/V)
GM22	19-Dec-08	Α	8.5	>100	9.7	16.3
GM22	19-Dec-08	В	0.5	12	20.8	1.2
GM23	19-Dec-08	Α	0	0	19.2	2.5
GM23	19-Dec-08	В	0	0	21.7	0.1
GM24	19-Dec-08	Α	0	0	16.9	4.6
GM24	19-Dec-08	В	0	0	21.5	0.2
GM25	19-Dec-08	Α	0	0	17.9	4.4
GM25	19-Dec-08	В	0	0	21.6	0
GM26	19-Dec-08	Α	0	0	20.2	1.3
GM26	19-Dec-08	В	0	0	21.7	0.1
GM27	19-Dec-08	Α	0	0	20.2	1.8
GM27	19-Dec-08	В	0	0	21.7	0.2
GM28	19-Dec-08	Α	0	0	19.3	2.8
GM28	19-Dec-08	В	0	0	20.8	0.8
GM29	19-Dec-08	Α	0	0	20.6	1.4
GM29	19-Dec-08	В	0	0	20.5	1.4
GM30	19-Dec-08	Α	0	0	19.4	3.3
GM30	19-Dec-08	В	0	0	21.7	0
A:						
B:						

^{*} Reading A refers to the reading recorded when well cap removed

Reading B refers to maximum reading recorded at least 30 minutes following removal of well cap.

